Prediction of nitrate concentrations using multiple linear regression and radial basis function neural network in the Cheliff River basin, Algeria

被引:1
|
作者
Mehdaoui, Ibrahim [1 ]
Boudibi, Samir [2 ]
Latif, Sarmad Dashti [3 ]
Sakaa, Bachir [1 ,2 ]
Chaffai, Hicham [1 ]
Hani, Azzedine [1 ]
机构
[1] Badji Mokhtar Univ, Fac Earth Sci, Lab Water Resources & Sustainable Dev, Annaba, Algeria
[2] Campus Mohamed Khider Univ, Sci & Tech Res Ctr Arid Reg CRSTRA, Biskra, Algeria
[3] Komar Univ Sci & Technol, Coll Engn, Civil Engn Dept, Sulaimany, Iraq
来源
关键词
Nitrate concentration; radial basis function neural network model; multiple linear regression model; water reservoir; Upper-Cheliff River basin; DISSOLVED-OXYGEN CONTENT; WATER-QUALITY PARAMETERS; DANUBE RIVER; MACHINES; MODEL;
D O I
10.1080/23249676.2023.2207838
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
In this paper, multiple linear regression (MLR) and radial basis function neural network (RBF-NN) are applied to predict nitrate (NO3-) concentration with and without reservoir volume (WV) as predictor using monthly data for ten years in three water reservoirs located in the upper Cheliff basin (NW of Algeria). The datasets were divided into training (80%) and testing (20%) sets and two different scenarios were compared. The results revealed that RBF-NN was more efficient (MAE = 0.192 and SI = 0.061) compared with the MLR model to predict NO3- in all reservoirs. RBF-NN provided the best accuracy in the testing period with a high R-2 of 0.957 in reservoir II, and low MSE and PBias of 0.048 mg/l and 2.98% in the training period in reservoir III, respectively. Overall, the best results were generated by M(iii) in scenario B.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [11] Position control of linear ultrasonic motor using radial basis function neural network
    Sun, Zhijun
    Shuai, Shuanghui
    Jin, Jiamei
    Yao, Zhiyuan
    Huang, Weiqing
    [J]. Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2010, 30 (06): : 650 - 653
  • [12] Prediction of log kw of disubstituted benzene derivatives in reversed-phase high-performance liquid chromatography using multiple linear regression and radial basis function neural network
    Wang, YW
    Zhang, XY
    Yao, XJ
    Gao, YH
    Liu, MC
    Hu, ZD
    Fan, BT
    [J]. ANALYTICA CHIMICA ACTA, 2002, 463 (01) : 89 - 97
  • [13] Prediction of Wastewater sludge recycle performance using Radial Basis Function Neural Network
    Luolong
    Luofei
    Zhouliyou
    Zhenghui
    Xuyuge
    [J]. 2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, : 319 - 321
  • [14] Online Vehicle Velocity Prediction Using an Adaptive Radial Basis Function Neural Network
    Hou, Jue
    Yao, Dongwei
    Wu, Feng
    Shen, Junhao
    Chao, Xiangyun
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (04) : 3113 - 3122
  • [15] Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function
    Xiong-Jun Wu
    Guan-Cheng Jiang
    Xiao-Jun Wang
    Na Fang
    Lin Zhao
    Ying-Min Ma
    Shao-Jie Luo
    [J]. Neural Computing and Applications, 2013, 22 : 947 - 953
  • [16] Prediction of pore-water pressure using radial basis function neural network
    Mustafa, M. R.
    Rezaur, R. B.
    Rahardjo, H.
    Isa, M. H.
    [J]. ENGINEERING GEOLOGY, 2012, 135 : 40 - 47
  • [17] Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function
    Wu, Xiong-Jun
    Jiang, Guan-Cheng
    Wang, Xiao-Jun
    Fang, Na
    Zhao, Lin
    Ma, Ying-Min
    Luo, Shao-Jie
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 22 (05): : 947 - 953
  • [18] Prediction of parkinson's disease using improved radial basis function neural network
    Moorthy, Rajalakshmi Shenbaga
    Pabitha, P.
    [J]. Computers, Materials and Continua, 2021, 68 (03): : 3101 - 3119
  • [19] Prediction of reservoir brine properties using radial basis function(RBF) neural network
    Afshin Tatar
    Saeid Naseri
    Nick Sirach
    Moonyong Lee
    Alireza Bahadori
    [J]. Petroleum, 2015, 1 (04) : 349 - 357
  • [20] Prediction of Parkinson's Disease Using Improved Radial Basis Function Neural Network
    Moorthy, Rajalakshmi Shenbaga
    Pabitha, P.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 3101 - 3119