Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration

被引:17
|
作者
Wang, Chen [1 ]
Wang, Li [2 ]
Soo, Allan [1 ]
Pathak, Nirenkumar Bansidhar [1 ]
Shon, Ho Kyong [1 ]
机构
[1] Univ Technol Sydney UTS, Sch Civil & Environm Engn, Sydney, NSW, Australia
[2] Shandong First Med Univ, Coll Artificial Intelligence & Big Data Med Sci, Jinan, Peoples R China
基金
澳大利亚研究理事会;
关键词
Machine learning; Boosted tree model; Thin film nanocomposite membrane; Organic solvent nanofiltration; Relative permeability; Relative selectivity; COMPOSITE MEMBRANE; SUPPORT; PERFORMANCE; FABRICATION; CHALLENGES; REMOVAL; MODEL;
D O I
10.1016/j.seppur.2022.122328
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, machine learning was used to form prediction models for thin film nanocomposite (TFN) organic solvent nanofiltration (OSN) membrane performance evaluation in terms of relative permeability (RP) and relative selectivity (RS). Twenty references including 9252 data points were collected to form four different models: linear, support vector machine (SVM), boosted tree (BT), and artificial neural network (ANN). Among the four models, BT exhibited optimal prediction accuracy in terms of root mean square error (RMSE) and coefficient of determination (R2) values for membrane RP (RMSE: 0.295, R2: 0.918) and RS (RMSE: 0.053, R2: 0.849) performance prediction. Parameter contribution analysis indicated that nanoparticle loading, amine concentration, chloride concentration, water contact angle, solvent viscosity, and molar volume are the main parameters influencing RP performance. For RS performance, nanoparticle loading, amine concentration, chloride concentration, and solute molecular weight play important roles. Partial dependence analysis indicated that the optimal conditions for TFN-OSN membrane fabrication are nanoparticle loading less than 5 wt%, the amine concentration around 2 wt%, and the chloride concentration around 0.15 wt%. In addition, membrane with super-hydrophilic or super-hydrophobic surface property exhibited higher RP performance based on different feed solvent types. Overall, this work introduces new ways both for TFN-OSN membrane performance prediction and for higher performance membrane design and development.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Polydopamine-enabled distribution of polysiloxane domains in polyamide thin-film nanocomposite membranes for organic solvent nanofiltration
    Liu, Jindun
    Mu, Wenrui
    Wang, Jingtao
    Liu, Hui
    Qin, Yitong
    He, Jing
    Guo, Fei
    Li, Yu
    Li, Yifan
    Cao, Xingzhong
    Zhang, Peng
    Lu, Eryang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 205 : 140 - 150
  • [22] Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives
    Zhou, Hui
    Akram, Ammara
    Semiao, Andrea J. C.
    Malpass-Evans, Richard
    Lau, Cher Hon
    McKeown, Neil B.
    Zhang, Weimin
    JOURNAL OF MEMBRANE SCIENCE, 2022, 644
  • [23] 2D Metal-Organic Framework-Based Thin-Film Nanocomposite Membranes for Reverse Osmosis and Organic Solvent Nanofiltration
    Li, Feng
    Liu, Theo Dongyu
    Xie, Silijia
    Guan, Jian
    Zhang, Sui
    CHEMSUSCHEM, 2021, 14 (11) : 2452 - 2460
  • [24] Machine learning for design of thin-film nanocomposite membranes
    Fetanat, Masoud
    Keshtiara, Mohammadali
    Keyikoglu, Ramazan
    Khataee, Alireza
    Daiyan, Rahman
    Razmjou, Amir
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 270
  • [25] All-Polymeric Thin-Film Nanocomposite Membrane for Organic Solvent Nanofiltration
    Mohamed, Syed Ibrahim Gnani Peer
    Nejati, Siamak
    Bavarian, Mona
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (12) : 6040 - 6044
  • [26] Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)
    Li, Can
    Li, Shuxuan
    Tian, Long
    Zhang, Jinmiao
    Su, Baowei
    Hu, Michael Z.
    JOURNAL OF MEMBRANE SCIENCE, 2019, 572 : 520 - 531
  • [27] Elucidating the impact of porous organic cage on thin film nanocomposite membranes for elevated nanofiltration
    Chen, Tiantian
    Wu, Xingming
    Li, Kai
    Shi, Guozhong
    Hou, Liutao
    Tian, Miaomiao
    Zhang, Yatao
    Zhu, Junyong
    DESALINATION, 2024, 576
  • [28] Thin-Film Composite Membranes with a Carbon Nanotube Interlayer for Organic Solvent Nanofiltration
    Liao, Mingjia
    Zhu, Yun
    Gong, Genghao
    Qiao, Lei
    MEMBRANES, 2022, 12 (08)
  • [29] Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)
    Aburabie, Jamaliah
    Neelakanda, Pradeep
    Karunakaran, Madhavan
    Peinemann, Klaus-Viktor
    REACTIVE & FUNCTIONAL POLYMERS, 2015, 86 : 225 - 232
  • [30] Flower-like MnO2 nanoparticles modified thin film nanocomposite membranes for efficient organic solvent nanofiltration
    He, Hongru
    Wang, Xi
    Xu, Pan
    Ma, Shengqi
    Peng, Henan
    Wang, Daming
    Zhou, Hongwei
    Chen, Chunhai
    COMPOSITES COMMUNICATIONS, 2023, 38