Orthogonality catastrophe and quantum speed limit for dynamical quantum phase transition

被引:2
|
作者
Zhu, Zheng-Rong [1 ]
Shao, Bin [1 ]
Zou, Jian [1 ]
Wu, Lian-Ao [2 ,3 ,4 ]
机构
[1] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[2] Univ Basque Country UPV EHU, Dept Phys, Bilbao 48080, Spain
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country UPV EHU, EHU Quantum Ctr, Leioa 48940, Biscay, Spain
基金
中国国家自然科学基金;
关键词
Orthogonality catastrophe; Quantum speed limit; Dynamical quantum phase transitions; Noise;
D O I
10.1016/j.physa.2023.129455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the orthogonality catastrophe and quantum speed limit in the Creutz model for dynamical quantum phase transitions. We show that exact zeros of the Loschmidt echo can exist in finite-size systems for specific discrete values. We highlight the role of the zero-energy mode when analyzing quench dynamics near the critical point. Additionally, we examine the behaviors of the time for the first exact zeros of the Loschmidt echo and the corresponding quantum speed limit time as the system size increases. While the bound is not tight, it can be attributed to the scaling properties of the band gap and energy variance with respect to system size. As such, we establish a link between the orthogonality catastrophe and quantum speed limit by referencing the full form of the Loschmidt echo. In addition, we reveal the potential that the quantum speed limit holds to detect static quantum phase transition point and a reduced amplitude of the noise induced behaviors of quantum speed limit.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dynamical quantum phase transition in diamond: Applications in quantum metrology
    Gonzalez, Francisco J.
    Norambuena, Ariel
    Coto, Raul
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [22] Quenching small quantum gases: Genesis of the orthogonality catastrophe
    Campbell, Steve
    Garcia-March, Miguel Angel
    Fogarty, Thomas
    Busch, Thomas
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [23] Dynamical Phase Transition for a Quantum Particle Source
    Butz, Maximilian
    Spohn, Herbert
    ANNALES HENRI POINCARE, 2010, 10 (07): : 1223 - 1249
  • [24] Dynamical Phase Transition for a Quantum Particle Source
    Maximilian Butz
    Herbert Spohn
    Annales Henri Poincaré, 2010, 10 : 1223 - 1249
  • [25] Dissipative Floquet dynamical quantum phase transition
    Naji, J.
    Jafari, Masoud
    Jafari, R.
    Akbari, Alireza
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [26] The quantum speed limit
    Giovannetti, V
    Lloyd, S
    Maccone, L
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 1 - 6
  • [27] Quantum speed limit
    Andreas Trabesinger
    Nature Physics, 2012, 8 (2) : 106 - 106
  • [28] Orthogonality Catastrophe in Dissipative Quantum Many-Body Systems
    Tonielli, F.
    Fazio, R.
    Diehl, S.
    Marino, J.
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [29] Quantum Speed Limit Quantified by the Changing Rate of Phase
    Sun, Shuning
    Peng, Yonggang
    Hu, Xianghong
    Zheng, Yujun
    PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [30] Phase Covariant Channel: Quantum Speed Limit of Evolution
    Baruah, Riya
    Paulson, K. G.
    Banerjee, Subhashish
    ANNALEN DER PHYSIK, 2023, 535 (01)