A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network

被引:4
|
作者
Han, Xiaoyu [1 ]
Cao, Yunpeng [2 ]
Luan, Junqi [2 ]
Ao, Ran [2 ]
Feng, Weixing [1 ]
Li, Shuying [2 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
deep convolutional neural network; fault diagnosis; K-max pooling; rolling bearing; switchable normalization; ROTATING MACHINERY; EXTRACTION; NOISE; SPEED; VMD;
D O I
10.3390/machines11020185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming to address the problems of a low fault detection rate and poor diagnosis performance under different loads and noise environments, a rolling bearing fault diagnosis method based on switchable normalization and a deep convolutional neural network (SNDCNN) is proposed. The method effectively extracted the fault features from the raw vibration signal and suppressed high-frequency noise by increasing the convolution kernel width of the first layer and stacking multiple layers' convolution kernels. To avoid losing the intensity information of the features, the K-max pooling operation was adopted at the pooling layer. To solve the overfitting problem and improve the generalization ability, a switchable normalization approach was used after each convolutional layer. The proposed SNDCNN was evaluated with two sets of rolling bearing datasets and obtained a higher fault detection rate than SVM and BP, reaching a fault detection rate of over 90% under different loads and demonstrating a better anti-noise performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Fault diagnosis method of rolling bearing based on deep belief network
    Zhiwu Shang
    Xiangxiang Liao
    Rui Geng
    Maosheng Gao
    Xia Liu
    Journal of Mechanical Science and Technology, 2018, 32 : 5139 - 5145
  • [32] Interpretability of deep convolutional neural networks on rolling bearing fault diagnosis
    Yang, Huixin
    Li, Xiang
    Zhang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [33] Fault Diagnosis Method of Rolling Bearing Based on BP Neural Network
    Huang Zhonghua
    Xie Ya
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 647 - 649
  • [34] Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network
    Ding C.
    Feng Y.
    Wang M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (02): : 287 - 296
  • [35] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [36] Fault Diagnosis of Rolling Bearing Based on Secondary Data Enhancement and Deep Convolutional Network
    Meng Z.
    Guan Y.
    Pan Z.
    Sun D.
    Fan F.
    Cao L.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (23): : 106 - 115
  • [37] Research on rolling bearing compound fault diagnosis based on AMOMCKD and convolutional neural network
    Runfang Hao
    Yunpeng Bai
    Kun Yang
    Yongqiang Cheng
    Shengjun Chang
    Scientific Reports, 15 (1)
  • [38] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4): : 819 - 831
  • [39] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional Neural Network
    Li, Guoqiang
    Deng, Chao
    Wu, Jun
    Chen, Zuoyi
    Xu, Xuebing
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [40] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406