Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels

被引:15
|
作者
Prabhakaran, S. [1 ]
Uthra, R. Annie [1 ]
Preetharoselyn, J. [2 ]
机构
[1] SRM Inst Sci & Technol, Dept Computat Intelligence, Chengalpattu 603203, India
[2] SRM Inst Sci & Technol, Dept Elect Engn, Chengalpattu 603203, India
来源
关键词
Photovoltaic systems; deep learning; defect detection; classification; localization; SYSTEM;
D O I
10.32604/csse.2023.028898
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Problem of Photovoltaic (PV) defects detection and classification has been well studied. Several techniques exist in identifying the defects and localizing them in PV panels that use various features, but suffer to achieve higher performance. An efficient Real-Time Multi Variant Deep learning Model (RMVDM) is presented in this article to handle this issue. The method considers different defects like a spotlight, crack, dust, and micro-cracks to detect the defects as well as localizes the defects. The image data set given has been preprocessed by applying the Region-Based Histogram Approximation (RHA) algorithm. The preprocessed images are applied with Gray Scale Quantization Algorithm (GSQA) to extract the features. Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons. Each class neuron has been designed to measure Defect Class Support (DCS). At the test phase, the input image has been applied with different operations, and the features extracted passed through the model trained. The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image. Further, the method uses the Higher-Order Texture Localization (HOTL) technique in localizing the defect. The proposed model produces efficient results with around 97% in defect detection and localization with higher accuracy and less time complexity.
引用
收藏
页码:2683 / 2700
页数:18
相关论文
共 50 条
  • [41] Deep learning-based ensemble model for classification of photovoltaic module visual faults
    Sridharan, Naveen Venkatesh
    Sugumaran, Vaithiyanathan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 5287 - 5302
  • [42] Deep Learning-Based Localization for UWB Systems
    Nguyen, Doan Tan Anh
    Lee, Han-Gyeol
    Jeong, Eui-Rim
    Lee, Han Lim
    Joung, Jingon
    ELECTRONICS, 2020, 9 (10) : 1 - 18
  • [43] A parallel deep learning-based code clone detection model
    Zhang, Xiangping
    Liu, Jianxun
    Shi, Min
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 181
  • [44] Deep learning-based classification model for botnet attack detection
    Ahmed, Abdulghani Ali
    Jabbar, Waheb A.
    Sadiq, Ali Safaa
    Patel, Hiran
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3457 - 3466
  • [45] Deep Learning-Based Doorplate Detection for Mobile Robot Localization in Indoor Environments
    Li Hongbin
    Meng Qinghao
    Sun Yuzhe
    Jin Licheng
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (14)
  • [46] Affordable Deep learning-based Leaf Disease Detection and Localization for Precision Agriculture
    Tej, Balkis
    Bouaafia, Soulef
    Ben Ahmed, Olfa
    Hajjaji, Mohamed Ali
    Mtibaa, Abdellatif
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 564 - 569
  • [47] Deep learning for photovoltaic defect detection using variational autoencoders
    Westraadt, Edward J.
    Brettenny, Warren J.
    Clohessy, Chantelle M.
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2023, 119 (1-2)
  • [48] Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy
    Chen, Xi
    Lowerison, Matthew R.
    Dong, Zhijie
    Han, Aiguo
    Song, Pengfei
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (04) : 1312 - 1325
  • [49] Deep learning-based evaluation of photovoltaic power generation
    Diaba, Sayawu Yakubu
    Alola, Andrew Adewale
    Simoes, Marcelo Godoy
    Elmusrati, Mohammed
    ENERGY REPORTS, 2024, 12 : 2077 - 2085
  • [50] Deep learning-based fall detection
    Chiang, Jason Wei Hoe
    Zhang, Li
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 891 - 898