Non-parametric Model Adaptive Control Based on Gaussian Process Regression

被引:0
|
作者
Lin, Chenxu [1 ]
Li, Mingyao [1 ]
Zhu, Juanping [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650500, Peoples R China
关键词
Gaussian process regression; non-parametric model adaptive control; pseudo-partial derivative; subset of data approximation;
D O I
10.1109/DDCLS58216.2023.10166900
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A non-parametric adaptive control algorithm based on Gaussian process regression is proposed for a class of discrete-time nonlinear systems. The pseudo-partial derivative estimation based on Gaussian process regression is devised, and the subset of data approximation is applied to improve this estimation. The estimation of the pseudo-partial derivative and the control law algorithm are combined to give a novel data-driven adaptive control scheme that does not depend on the mathematical model of the controlled system. The monotonic convergence and the BIBO stability of the proposed control algorithm is proved. Simulations indicate the effectiveness and robustness to the models and environments.
引用
收藏
页码:473 / 478
页数:6
相关论文
共 50 条
  • [31] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [32] A NOTE ON NON-PARAMETRIC CENSORED REGRESSION
    MCLEISH, DL
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (01) : 1 - 6
  • [33] Design of a completely model free adaptive control in the presence of parametric, non-parametric uncertainties and random control signal delay
    Tutsoy, Onder
    Barkana, Duygun Erol
    Tugal, Harun
    [J]. ISA TRANSACTIONS, 2018, 76 : 67 - 77
  • [34] Non-parametric regression for compositional data
    Di Marzio, Marco
    Panzera, Agnese
    Venieri, Catia
    [J]. STATISTICAL MODELLING, 2015, 15 (02) : 113 - 133
  • [35] Imitation Learning with Non-Parametric Regression
    Vaandrager, Maarten
    Babuska, Robert
    Busoniu, Lucian
    Lopes, Gabriel A. D.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 91 - 96
  • [36] Testing for additivity in non-parametric regression
    Zhang, Yichi
    Staicu, Ana-Maria
    Maity, Arnab
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (04): : 445 - 462
  • [37] Short-term wind power forecast based on non-parametric regression model
    Wang, Caixia
    Lu, Zongxiang
    Qiao, Ying
    Min, Yong
    Zhou, Shuangxi
    [J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2010, 34 (16): : 78 - 82
  • [38] Immersion and Invariance Based Composite Adaptive Control for Nonlinear Systems with Both Parametric and Non-Parametric Uncertainties
    Liu, Zhen
    Pu, Zhiqiang
    Qiu, Tenghai
    Wang, Huimu
    Yi, Jianqiang
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 3867 - 3873
  • [39] On a non-parametric algorithm for smoothing parameter control in adaptive filtering
    Vorobyev, S.A.
    Bodyanskiy, E.V.
    [J]. Engineering Simulation, 1999, 16 (03): : 341 - 350
  • [40] Background Subtraction Based on Non-parametric Model
    Zhu, Ting
    Zeng, Peifeng
    [J]. PROCEEDINGS OF 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2015), 2015, : 1379 - 1382