Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants

被引:4
|
作者
Fuentes-Merlos, Maria Isabel [1 ,2 ]
Bamba, Masaru [3 ]
Sato, Shusei [3 ]
Higashitani, Atsushi [1 ]
机构
[1] Tohoku Univ, Grad Sch Life Sci, Mol Genet & Physiol Lab, Mol & Chem Life Sci, Sendai 9808577, Japan
[2] INVEGEM, Inst Invest Cient & Educ Acerca Enfermedades Genet, Sacatepequez 03009, Guatemala
[3] Tohoku Univ, Grad Sch Life Sci, Symbiosis Genom Lab, Ecol Dev Adaptabil Life Sci, Sendai 9808577, Japan
基金
日本学术振兴会;
关键词
tomato; self-grafting; drought stress; histone modification; DNA methylation; DNA METHYLATION; ARABIDOPSIS; CHROMATIN; GENE; ASSOCIATION; FRAMEWORK; PROGRAM; GROWTH;
D O I
10.1093/dnares/dsad016
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Grafting is widely used as a method to increase stress tolerance in good fruiting lines of Solanaceae plants. However, little is known about how grafting, affects epigenetic modifications and leads to stress tolerance, especially within the same line. Here, we studied the effects of self-grafting in tomato plants on histone and DNA modifications and changes in gene expression related to drought stress. We found that at the three-leaf stage, 1 week after self-grafting, histone H3 K4 trimethylation and K27 trimethylation changes were observed in more than 500 genes each, and DNA methylation changes in more than 5,000 gene regions at the shoot apex compared to the non-grafted control. In addition, two weeks after the epigenomic changes, global expression changes continued to be observed at the shoot apex in several genes related to the metabolic process of nitrogen compounds, responses to stimulus, chromosome organization, cell cycle-related genes, and regulation of hormone levels. Finally, these grafted seedlings acquired remarkable drought tolerance, suggesting that epigenomic modifications during the wound-healing process mitigate stress tolerance in tomato plants.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants
    Yu, Wenqing
    Zhao, Ruirui
    Wang, Liu
    Zhang, Shujuan
    Li, Rui
    Sheng, Jiping
    Shen, Lin
    PLANTA, 2019, 250 (02) : 643 - 655
  • [42] ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants
    Wenqing Yu
    Ruirui Zhao
    Liu Wang
    Shujuan Zhang
    Rui Li
    Jiping Sheng
    Lin Shen
    Planta, 2019, 250 : 643 - 655
  • [43] Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato
    Yang, Lu
    Bu, Sijia
    Zhao, Shengxue
    Wang, Ning
    Xiao, Jiaxin
    He, Feng
    Gao, Xuan
    PLOS ONE, 2022, 17 (07):
  • [44] APPLICATION OF STRESS SUSCEPTIBILITY INDEX FOR DROUGHT TOLERANCE SCREENING OF TOMATO POPULATIONS
    Zdravkovic, Jasmina
    Jovanovic, Zorica
    Djordjevic, Mladen
    Girek, Zdenka
    Zdravkovic, Milan
    Stikic, Radmila
    GENETIKA-BELGRADE, 2013, 45 (03): : 679 - 689
  • [45] Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato
    Yang, Lu
    Bu, Sijia
    Zhao, Shengxue
    Wang, Ning
    Xiao, Jiaxin
    He, Feng
    Gao, Xuan
    PLOS ONE, 2022, 17 (05):
  • [46] Plant hormone ethylene: A leading edge in conferring drought stress tolerance
    Nazir, Faroza
    Peter, Poor
    Gupta, Ravi
    Kumari, Sarika
    Nawaz, Kashif
    Khan, M. Iqbal R.
    PHYSIOLOGIA PLANTARUM, 2024, 176 (01)
  • [47] THE ROLE OF TRANSCRIPTION FACTORS AND EPIGENETIC MECHANISMS IN PLANTS DROUGHT STRESS RESPONSE
    Lechowska, Katarzyna
    Wojtyla, Lukasz
    Kubala, Szymon
    Garnczarska, Malgorzata
    POSTEPY BIOLOGII KOMORKI, 2014, 41 (03) : 463 - 489
  • [48] The Tomato WRKY Transcription Factor SlWRKY17 Positively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants
    Li, W.
    Li, D. H.
    Li, H. Y.
    Wang, M. C.
    Wang, Z.
    Liu, J. H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2022, 69 (07)
  • [49] A Lycopene ε-Cyclase TILLING Allele Enhances Lycopene and Carotenoid Content in Fruit and Improves Drought Stress Tolerance in Tomato Plants
    Petrozza, Angelo
    Summerer, Stephan
    Melfi, Donato
    Mango, Teresa
    Vurro, Filippo
    Bettelli, Manuele
    Janni, Michela
    Cellini, Francesco
    Carriero, Filomena
    GENES, 2023, 14 (06)
  • [50] Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants
    Kumar, Manoj
    Kumar Patel, Manish
    Kumar, Navin
    Bajpai, Atal Bihari
    Siddique, Kadambot H. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)