Community network auto-regression for high-dimensional time series

被引:10
|
作者
Chen, Elynn Y. [1 ]
Fan, Jianqing [2 ]
Zhu, Xuening [3 ]
机构
[1] NYU, New York, NY USA
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Fudan Univ, Shanghai, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Network autoregression; Community structure; Common latent factors; High-dimensional time series; VAR model; COVARIANCE-MATRIX ESTIMATION; PANEL-DATA MODELS; CONSISTENCY; INFERENCE;
D O I
10.1016/j.jeconom.2022.10.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
Modeling responses on the nodes of a large-scale network is an important task that arises commonly in practice. This paper proposes a community network vector autoregressive (CNAR) model, which utilizes the network structure to characterize the dependence and intra-community homogeneity of the high-dimensional time series. The CNAR model greatly increases the flexibility and generality of the network vector autoregressive (NAR) model proposed by Zhu et al. (2017) by allowing heterogeneous network effects across different network communities. In addition, the non-community-related latent factors are included to account for unknown cross-sectional dependence. The number of network communities can diverge as the network expands, which leads to estimating a diverging number of model parameters. We obtain a set of stationary conditions and develop an efficient two-step weighted least-squares estimator. The consistency and asymptotic normality properties of the estimators are established. Theoretical results show that the two-step estimator can further improve the efficiency of one-step estimator when the error admits a factor structure. The advantages of the CNAR model are illustrated on a variety of synthetic and real datasets.& COPY; 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:1239 / 1256
页数:18
相关论文
共 50 条
  • [41] High-Dimensional Knockoffs Inference for Time Series Data
    Chi, Chien-Ming
    Fan, Yingying
    Ing, Ching-Kang
    Lv, Jinchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
  • [42] Factor Modeling for Clustering High-Dimensional Time Series
    Zhang, Bo
    Pan, Guangming
    Yao, Qiwei
    Zhou, Wang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1252 - 1263
  • [43] Threshold factor models for high-dimensional time series
    Liu, Xialu
    Chen, Rong
    JOURNAL OF ECONOMETRICS, 2020, 216 (01) : 53 - 70
  • [44] Test for the mean of high-dimensional functional time series
    Yang, Lin
    Feng, Zhenghui
    Jiang, Qing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 201
  • [45] On the Modeling and Prediction of High-Dimensional Functional Time Series
    Chang, Jinyuan
    Fang, Qin
    Qiao, Xinghao
    Yao, Qiwei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [46] Consistent causal inference for high-dimensional time series
    Cordoni, Francesco
    Sancetta, Alessio
    JOURNAL OF ECONOMETRICS, 2024, 246 (1-2)
  • [47] Factor Models for High-Dimensional Tensor Time Series
    Chen, Rong
    Yang, Dan
    Zhang, Cun-Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 94 - 116
  • [48] Testing for high-dimensional network parameters in auto-regressive models
    Zheng, Lili
    Raskutti, Garvesh
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 4977 - 5043
  • [49] Regression on High-dimensional Inputs
    Kuleshov, Alexander
    Bernstein, Alexander
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 732 - 739
  • [50] On inference in high-dimensional regression
    Battey, Heather S.
    Reid, Nancy
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (01) : 149 - 175