On the power graph of a monogenic semigroup

被引:0
|
作者
Khanra, Biswaranjan [1 ]
Mandal, Manasi [1 ]
Ghosh, Buddha Dev [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] IIT Guwahati, Dept Math, Gauhati 781309, Assam, India
关键词
Monogenic semigroup; power graph; indices; perfectness; Cartesian product;
D O I
10.1142/S1793830923500052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S-M = {0, x, x(2), ... , x(n)} be a monogenic semigroup with zero. Here, we consider the power graph P(S-M) over S-M with vertex set S-M(*) = SM\{0} and two distinct vertices x(i) and x(j) are adjacent if i divides j or j divides i, where 1 <= i, j <= n. We compute various graph parameters of P(S-M) and topological indices based on distance of vertices. Finally, we compute some graph parameters of the cartesian product P(S-M(1)) rectangle P(S-M(2)) of graphs P(S-M(1)) and P(S-M(2)).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The non-nilpotent graph of a semigroup
    Jespers, E.
    Shahzamanian, M. H.
    [J]. SEMIGROUP FORUM, 2012, 85 (01) : 37 - 57
  • [32] A classification of disjoint unions of two or three copies of the free monogenic semigroup
    Abu-Ghazalh, N.
    Mitchell, J. D.
    Peresse, Y.
    Ruskuc, N.
    [J]. SEMIGROUP FORUM, 2015, 91 (01) : 53 - 61
  • [33] Sombor Index over the Tensor and Cartesian Products of Monogenic Semigroup Graphs
    Unal, Seda Oguz
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [34] A DIRICHLET ANALOGUE OF THE FREE MONOGENIC INVERSE SEMIGROUP VIA MOBIUS INVERSION
    Schwab, Emil Daniel
    Stoianov, George
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (05) : 1701 - 1710
  • [35] WHEN IS THE CAYLEY GRAPH OF A SEMIGROUP ISOMORPHIC TO THE CAYLEY GRAPH OF A GROUP
    Wang, Shoufeng
    [J]. MATHEMATICA SLOVACA, 2017, 67 (01) : 33 - 40
  • [36] A classification of disjoint unions of two or three copies of the free monogenic semigroup
    N. Abu-Ghazalh
    J. D. Mitchell
    Y. Péresse
    N. Ruškuc
    [J]. Semigroup Forum, 2015, 91 : 53 - 61
  • [37] The zero-divisor graph of a commutative semigroup
    DeMeyer, FR
    McKenzie, T
    Schneider, K
    [J]. SEMIGROUP FORUM, 2002, 65 (02) : 206 - 214
  • [38] On the Semigroup Whose Elements Are Subgraphs of a Complete Graph
    Chaiya, Yanisa
    Pookpienlert, Chollawat
    Nupo, Nuttawoot
    Panma, Sayan
    [J]. MATHEMATICS, 2018, 6 (05):
  • [39] The zero-divisor graph of a commutative semigroup
    F. R. DeMeyer
    T. McKenzie
    K. Schneider
    [J]. Semigroup Forum, 2002, 65 : 206 - 214
  • [40] THE ZERO-DIVISOR GRAPH ASSOCIATED TO A SEMIGROUP
    DeMeyer, Lisa
    Greve, Larisa
    Sabbaghi, Arman
    Wang, Jonathan
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3370 - 3391