I3DOD: Towards Incremental 3D Object Detection via Prompting

被引:1
|
作者
Liang, Wenqi [1 ,2 ,3 ]
Sun, Gan [1 ,2 ]
Liu, Chenxi [1 ,2 ,3 ]
Dong, Jiahua [1 ,2 ,3 ]
Wang, Kangru [4 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
关键词
D O I
10.1109/IROS55552.2023.10341834
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection have achieved significant performance in many fields, e.g., robotics system, autonomous driving, and augmented reality. However, most existing methods could cause catastrophic forgetting of old classes when performing on the class-incremental scenarios. Meanwhile, the current class-incremental 3D object detection methods neglect the relationships between the object localization information and category semantic information, and assume all the knowledge of old model is reliable. To address the above challenge, we present a novel Incremental 3D Object Detection framework with the guidance of prompting, i.e., I3DOD. Specifically, we propose a task-shared prompts mechanism to learn the matching relationships between the object localization information and category semantic information. After training on the current task, these prompts will be stored in our prompt pool, and perform the relationship of old classes in the next task. Moreover, we design a reliable distillation strategy to transfer knowledge from two aspects: a reliable dynamic distillation is developed to filter out the negative knowledge and transfer the reliable 3D knowledge to new detection model; the relation feature is proposed to capture the responses relation in feature space and protect plasticity of the model when learning novel 3D classes. To the end, we conduct comprehensive experiments on two benchmark datasets and our method outperforms the state-of-the-art object detection methods by 0.6% similar to 2.7% in terms of mAP@0.25.
引用
收藏
页码:5738 / 5743
页数:6
相关论文
共 50 条
  • [41] Lifting Object Detection Datasets into 3D
    Carreira, Joao
    Vicente, Sara
    Agapito, Lourdes
    Batista, Jorge
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) : 1342 - 1355
  • [42] A Heterogeneous Approach for 3D Object Detection
    Lü Z.
    Yao Z.
    Jia Y.
    Bao Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (12): : 2748 - 2759
  • [43] Super Sparse 3D Object Detection
    Fan, Lue
    Yang, Yuxue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12490 - 12505
  • [44] Collaborative 3D Object Detection for Autonomous Vehicles via Learnable Communications
    Wang, J.
    Zeng, Y.
    Gong, Y.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (09) : 9804 - 9816
  • [45] Testing Object Detection for Autonomous Driving Systems via 3D Reconstruction
    Shao, Jinyang
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2021), 2021, : 117 - 119
  • [46] Multimodal fusion via voting network for 3D object detection in indoors
    Li, Jianxin
    Si, Guannan
    Liang, Xinyu
    An, Zhaoliang
    Tian, Pengxin
    Zhou, Fengyu
    Wang, Xiaoliang
    PATTERN RECOGNITION, 2025, 164
  • [47] Towards 3D object recognition with contractive autoencoders
    Liu, Bo
    Kong, Lingcheng
    Zhao, Jianghai
    Wu, Jinghua
    Tan, Zhiying
    EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [48] Multimodal Object Query Initialization for 3D Object Detection
    van Geerenstein, Mathijs R.
    Ruppel, Felicia
    Dietmayers, Klaus
    Gavrila, Dariu M.
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 12484 - 12491
  • [49] 3D Object Proposals for Accurate Object Class Detection
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhu, Yukun
    Berneshawi, Andrew
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [50] Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver
    Liu, Xianpeng
    Zheng, Ce
    Cheng, Kelvin
    Xue, Nan
    Qi, Guo-Jun
    Wu, Tianfu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6413 - 6423