Machine Learning-based Classification of Online Industrial Datasets

被引:0
|
作者
Faber, Rastislav [1 ]
L'ubusky, Karol [2 ]
Paulen, Radoslav [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Bratislava, Slovakia
[2] Slovnaft As, Bratislava, Slovakia
关键词
Machine Learning; Data Classification; Alkylation Process; Analytics; Industry; 4.0;
D O I
10.1109/PC58330.2023.10217543
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We aim to incorporate data analytics into industrial process control by utilizing machine learning (ML) algorithms to classify the real-time data of online analyzers. Real-time visualization of results onto a front-end system (i.e., refinery control room) provides an extensive view of the production process, increasing efficiency of production. Selected ML classifiers are assessed according to the performance metrics based on individual scores. These parameters, along with the complexity of implementation, provide an adequate pointer for selecting a suitable classifier model to serve as a decision-making tool. In our use case, accurate categorization of measurements provides a cheap validation guideline that would otherwise be not possible. Computed metrics indicate a difficulty to classify the cases when the slight deviations (drifts) occur from real values. Based on the true positivity rate, linear SVM separation is desirable for data drift prediction (64 %), while k-Means is more successful in detecting outliers (65 %) and normal operation (99 %).
引用
收藏
页码:132 / 137
页数:6
相关论文
共 50 条
  • [21] Online accelerator optimization with a machine learning-based stochastic algorithm
    Zhang, Zhe
    Song, Minghao
    Huang, Xiaobiao
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [22] Survey on Machine Learning-Based Anomaly Detection for Industrial Internet
    Liu Q.
    Chen Y.
    Ni J.
    Luo C.
    Liu C.
    Cao Y.
    Tan R.
    Feng Y.
    Zhang Y.
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (05): : 994 - 1014
  • [23] Machine Learning-Based Detection Technique for NDT in Industrial Manufacturing
    Niccolai, Alessandro
    Caputo, Davide
    Chieco, Leonardo
    Grimaccia, Francesco
    Mussetta, Marco
    [J]. MATHEMATICS, 2021, 9 (11)
  • [24] Machine learning-based radar waveform classification for cognitive EW
    Adnan Orduyilmaz
    Ersin Yar
    Mehmet Burak Kocamis
    Mahmut Serin
    Murat Efe
    [J]. Signal, Image and Video Processing, 2021, 15 : 1653 - 1662
  • [25] A review on machine learning-based approaches for Internet traffic classification
    Salman, Ola
    Elhajj, Imad H.
    Kayssi, Ayman
    Chehab, Ali
    [J]. ANNALS OF TELECOMMUNICATIONS, 2020, 75 (11-12) : 673 - 710
  • [26] Machine learning-based classification of petrofacies in fine laminated limestones
    Genesis, Gallileu
    Gomes, Igor F.
    Barbosa, Jose Antonio
    De Araujo, Araly Fabiana L.
    Ramos, Germano Mario S.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96 (01):
  • [27] Machine Learning-Based Elephant Flow Classification on the First Packet
    Jurkiewicz, Piotr
    Kadziolka, Bartosz
    Kantor, Miroslaw
    Domzal, Jerzy
    Wojcik, Robert
    [J]. IEEE ACCESS, 2024, 12 : 105744 - 105760
  • [28] Machine Learning-based Detection and Classification of Walnut Fungi Diseases
    Khan, Muhammad Alyas
    Ali, Mushtaq
    Shah, Mohsin
    Mahmood, Toqeer
    Ahmad, Muneer
    Jhanjhi, N. Z.
    Bhuiyan, Mohammad Arif Sobhan
    Jaha, Emad Sami
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (03): : 771 - 785
  • [29] Machine learning-based radar waveform classification for cognitive EW
    Orduyilmaz, Adnan
    Yar, Ersin
    Kocamis, Mehmet Burak
    Serin, Mahmut
    Efe, Murat
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) : 1653 - 1662
  • [30] Bull Sperm Tracking and Machine Learning-Based Motility Classification
    Hidayatullah, Priyanto
    Mengko, Tati L. E. R.
    Munir, Rinaldi
    Barlian, Anggraini
    [J]. IEEE ACCESS, 2021, 9 : 61159 - 61170