Heterogeneous lineage-specific arginine deiminase expression within dental microbiome species

被引:2
|
作者
Mann, Allison E. [1 ]
Chakraborty, Brinta [2 ]
O'Connell, Lauren M. [1 ]
Nascimento, Marcelle M. [3 ]
Burne, Robert A. [2 ]
Richards, Vincent P. [1 ]
机构
[1] Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA
[2] Univ Florida, Coll Dent, Dept Oral Biol, Gainesville, FL 32611 USA
[3] Univ Florida, Coll Dent, Dept Restorat Dent Sci, Div Operat Dent, Gainesville, FL USA
来源
MICROBIOLOGY SPECTRUM | 2024年 / 12卷 / 04期
关键词
metatranscriptomics; arginine deiminase system; probiotics; oral microbiome; caries; UREOLYTIC STREPTOCOCCUS-MUTANS; GENE-EXPRESSION; PORPHYROMONAS-GINGIVALIS; DIFFERENTIAL EXPRESSION; PHYLOGENETIC ANALYSIS; CARIES LESIONS; ORAL BACTERIA; SYSTEM; ALIGNMENT; METABOLISM;
D O I
10.1128/spectrum.01445-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Arginine catabolism by the bacterial arginine deiminase system (ADS) has anticariogenic properties through the production of ammonia, which modulates the pH of the oral environment. Given the potential protective capacity of the ADS pathway, the exploitation of ADS-competent oral microbes through pre- or probiotic applications is a promising therapeutic target to prevent tooth decay. To date, most investigations of the ADS in the oral cavity and its relation to caries have focused on indirect measures of activity or on specific bacterial groups, yet the pervasiveness and rate of expression of the ADS operon in diverse mixed microbial communities in oral health and disease remain an open question. Here, we use a multivariate approach, combining ultra-deep metatranscriptomic sequencing with paired metataxonomic and in vitro citrulline quantification to characterize the microbial community and ADS operon expression in healthy and late-stage cavitated teeth. While ADS activity is higher in healthy teeth, we identify multiple bacterial lineages with upregulated ADS activity on cavitated teeth that are distinct from those found on healthy teeth using both reference-based mapping and de novo assembly methods. Our dual metataxonomic and metatranscriptomic approach demonstrates the importance of species abundance for gene expression data interpretation and that patterns of differential expression can be skewed by low-abundance groups. Finally, we identify several potential candidate probiotic bacterial lineages within species that may be useful therapeutic targets for the prevention of tooth decay and propose that the development of a strain-specific, mixed-microbial probiotic may be a beneficial approach given the heterogeneity of taxa identified here across health groups.IMPORTANCETooth decay is the most common preventable chronic disease, affecting more than two billion people globally. The development of caries on teeth is primarily a consequence of acid production by cariogenic bacteria that inhabit the plaque microbiome. Other bacterial strains in the oral cavity may suppress or prevent tooth decay by producing ammonia as a byproduct of the arginine deiminase metabolic pathway, increasing the pH of the plaque biofilm. While the benefits of arginine metabolism on oral health have been extensively documented in specific bacterial groups, the prevalence and consistency of arginine deiminase system (ADS) activity among oral bacteria in a community context remain an open question. In the current study, we use a multi-omics approach to document the pervasiveness of the expression of the ADS operon in both health and disease to better understand the conditions in which ADS activity may prevent tooth decay. Tooth decay is the most common preventable chronic disease, affecting more than two billion people globally. The development of caries on teeth is primarily a consequence of acid production by cariogenic bacteria that inhabit the plaque microbiome. Other bacterial strains in the oral cavity may suppress or prevent tooth decay by producing ammonia as a byproduct of the arginine deiminase metabolic pathway, increasing the pH of the plaque biofilm. While the benefits of arginine metabolism on oral health have been extensively documented in specific bacterial groups, the prevalence and consistency of arginine deiminase system (ADS) activity among oral bacteria in a community context remain an open question. In the current study, we use a multi-omics approach to document the pervasiveness of the expression of the ADS operon in both health and disease to better understand the conditions in which ADS activity may prevent tooth decay.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Lineage-specific loss of FGF17 within the avian orders Galliformes and Passeriformes
    Abramyan, John
    GENE, 2015, 563 (02) : 180 - 189
  • [42] Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana
    Haining Lin
    Gaurav Moghe
    Shu Ouyang
    Amy Iezzoni
    Shin-Han Shiu
    Xun Gu
    C Robin Buell
    BMC Evolutionary Biology, 10
  • [43] Differentiation lineage-specific expression of human heat shock transcription factor 2
    Pirkkala, L
    Alastalo, TP
    Nykänen, P
    Seppä, L
    Sistonen, L
    FASEB JOURNAL, 1999, 13 (09): : 1089 - 1098
  • [44] Developmental lentiviral vectors for lineage-specific expression in human hematopoietic cells.
    Hanawa, H
    Persons, DA
    Nathwani, AC
    Hargrove, PW
    Kelly, PF
    Vanin, EF
    Nienhuis, AW
    BLOOD, 2001, 98 (11) : 213A - 214A
  • [45] Enhancer Accessibility during Erythropoiesis and Megakaryopoiesis Correlates with Lineage-Specific Gene Expression
    Heuston, Elisabeth F.
    Keller, Cheryl A.
    Anderson, Stacie M.
    Hardison, Ross C.
    Bodine, David M.
    BLOOD, 2015, 126 (23)
  • [46] Dual Lineage-Specific Expression of Sox17 During Mouse Embryogenesis
    Choi, Eunyoung
    Kraus, Marine R-C.
    Lemaire, Laurence A.
    Yoshimoto, Momoko
    Vemula, Sasidhar
    Potter, Leah A.
    Manduchi, Elisabetta
    Stoeckert, Christian J., Jr.
    Grapin-Botton, Anne
    Magnuson, Mark A.
    STEM CELLS, 2012, 30 (10) : 2297 - 2308
  • [47] Lineage-specific effects of polychlorinated biphenyls (PCB) on gene expression in the rabbit blastocyst
    Clausen, I
    Kietz, S
    Fischer, B
    REPRODUCTIVE TOXICOLOGY, 2005, 20 (01) : 47 - 56
  • [48] CELL LINEAGE-SPECIFIC EXPRESSION OF ACTIN GENES IN SEA-URCHIN EMBRYOS
    COX, KH
    ANGERER, RC
    ANGERER, LM
    JOURNAL OF CELL BIOLOGY, 1983, 97 (05): : A7 - A7
  • [49] Lineage-specific expression and functional relevance of microRNA genes in normal hematopoiesis.
    Felli, N
    Pelosi, E
    Botta, R
    Fontana, L
    Lulli, V
    Marziali, G
    Morsilli, O
    Valtieri, M
    Vitiani, LR
    Calin, GA
    Liu, CG
    Sorrentino, A
    Croce, CM
    Peschle, C
    BLOOD, 2005, 106 (11) : 638A - 638A
  • [50] Lineage-specific responses to reduced embryonic Pax3 expression levels
    Zhou, Hong-Ming
    Wang, Jian
    Rogers, Rhonda
    Conway, Simon J.
    DEVELOPMENTAL BIOLOGY, 2008, 315 (02) : 369 - 382