Prediction of Cervical Cancer Patients' Survival Period with Machine Learning Techniques

被引:0
|
作者
Chanudom, Intorn [1 ]
Tharavichitkul, Ekkasit [2 ]
Laosiritaworn, Wimalin [3 ]
机构
[1] Chiang Mai Univ, Fac Engn, Program Ind Engn, Chiang Mai, Thailand
[2] Chiang Mai Univ, Fac Med, Dept Radiol, Div Radiat Oncol, Chiang Mai, Thailand
[3] Chiang Mai Univ, Fac Engn, Dept Ind Engn, Chiang Mai 50200, Thailand
关键词
Machine Learning; Data Visualization; Uterine Cervical Neoplasms; Survival Rate; Disease Attributes;
D O I
10.4258/hir.2024.30.1.60
中图分类号
R-058 [];
学科分类号
摘要
Objectives: The objective of this research is to apply machine learning (ML) algorithms to predict the survival of cervical cancer patients. The aim was to address the limitations of traditional statistical methods, which often fail to provide accurate answers due to the complexity of the problem. Methods: This research employed visualization techniques for initial data understanding. Subsequently, ML algorithms were used to develop both classification and regression models for survival prediction. In the classification models, we trained the algorithms to predict the time interval between the initial diagnosis and the patient's death. The intervals were categorized as "<6 months," "6 months to 3 years," "3 years to 5 years," and ">5 years." The regression model aimed to predict survival time (in months). We used attribute weights to gain insights into the model, highlighting features with a significant impact on predictions and offering valuable insights into the model's behavior and decision -making process. Results: The gradient boosting trees algorithm achieved an 81.55% accuracy in the classification model, while the random forest algorithm excelled in the regression model, with a root mean square error of 22.432. Notably, radiation doses around the affected areas significantly influenced survival duration. Conclusions: Machine learning demonstrated the ability to provide high -accuracy predictions of survival periods in both classification and regression problems. This suggests its potential use as a decision -support tool in the process of treatment planning and resource allocation for each patient.
引用
收藏
页码:60 / 72
页数:13
相关论文
共 50 条
  • [21] Overall and Disease-Free Survival Prediction of Postoperative Breast Cancer Patients using Machine Learning Techniques
    Shouket, Tahreem
    Mahmood, Sajid
    Hassan, Malik Tahir
    Iftikhar, Afnan
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 238 - 243
  • [22] Lung Cancer Survival Prediction via Machine Learning Regression, Classification, and Statistical Techniques
    Bartholomai, James A.
    Frieboes, Hermann B.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2018, : 632 - 637
  • [23] Prediction of lung cancer patient survival via supervised machine learning classification techniques
    Lynch, Chip M.
    Abdollahi, Behnaz
    Fuqua, Joshua D.
    de Carlo, Alexandra R.
    Bartholomai, James A.
    Balgemann, Rayeanne N.
    van Berkel, Victor H.
    Frieboes, Hermann B.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 108 : 1 - 8
  • [24] Cervical Cancer Prediction Empowered with Federated Machine Learning
    Nasir, Muhammad Umar
    Khalil, Omar Kassem
    Ateeq, Karamath
    Almogadwy, Bassam SaleemAllah
    Khan, M. A.
    Adnan, Khan Muhammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 963 - 981
  • [25] Predicting factors for survival of breast cancer patients using machine learning techniques
    Mogana Darshini Ganggayah
    Nur Aishah Taib
    Yip Cheng Har
    Pietro Lio
    Sarinder Kaur Dhillon
    BMC Medical Informatics and Decision Making, 19
  • [26] Predicting factors for survival of breast cancer patients using machine learning techniques
    Ganggayah, Mogana Darshini
    Taib, Nur Aishah
    Har, Yip Cheng
    Lio, Pietro
    Dhillon, Sarinder Kaur
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)
  • [27] The Application of Machine Learning Techniques in Prediction of Quality of Life Features for Cancer Patients
    Savic, Milos
    Kurbalija, Vladimir
    Ilic, Mihailo
    Ivanovic, Mirjana
    Jakovetic, Dusan
    Valachis, Antonios
    Autexier, Serge
    Rust, Johannes
    Kosmidis, Thanos
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2023, 20 (01) : 381 - 404
  • [28] Application of Machine Learning Techniques for Prediction of Radiation Pneumonitis in Lung Cancer Patients
    Oh, Jung Hun
    Al-Lozi, Rawan
    El Naqa, Issam
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 478 - 483
  • [29] Improving the Prediction of Survival in Cancer Patients by Using Machine Learning Techniques: Experience of Gene Expression Data: A Narrative Review
    Bashiri, Azadeh
    Ghazisaeedi, Marjan
    Safdari, Reza
    Shahmoradi, Leila
    Ehtesham, Hamide
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2017, 46 (02) : 165 - 172
  • [30] Machine Learning Applied to survival prediction of elderly cancer patients: Systematic Review
    Lacerda, Tiago Beltrao
    Medeiros, Alberto
    Perez, Regis Batista
    Cavalcanti Furtado, Ana Paula
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,