Improved Long Short-Term Memory-Based Periodic Traffic Volume Prediction Method

被引:3
|
作者
Chen, Yuguang [1 ]
Guo, Jincheng [1 ]
Xu, Hongbin [1 ]
Huang, Jintao [1 ]
Su, Linyong [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650504, Peoples R China
关键词
Traffic flow prediction; cycle queue length; cycle traffic volume; improved long short-term memory (iLSTM); improved bidirectional long short-term memory (iBiLSTM); deep learning; ABSOLUTE ERROR MAE; FLOW PREDICTION; NEURAL-NETWORKS; QUEUE LENGTHS; INTERSECTIONS; MODELS; RMSE;
D O I
10.1109/ACCESS.2023.3305398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In response to the problem of fixed time intervals for short-term traffic flow prediction, which fails to meet the requirements of traffic signal control based on traffic cycle signals, this paper proposes an improved long short-term memory-based method for periodic traffic volume prediction. The method presented in this study involves improvements to the Long Short-Term Memory (iLSTM) and Bidirectional Long Short-Term Memory (iBiLSTM) models, leading to the construction of the iBiLSTM-iLSTM-NN model. This model incorporates spatial data from surrounding intersections and employs data fitting techniques to establish the correlation between periodic queue length and traffic volume. Subsequently, a predictive model for periodic traffic volume is developed based on this correlation, enabling reliable forecasting of future traffic volumes within a given cycle. Additionally, actual intersection data is collected for simulation analysis. The results indicate that the prediction error of periodic traffic volume is influenced by different traffic flow characteristics such as peak, off-peak, and normal periods, as well as different inbound lanes. Different model parameters have a noticeable impact on the model's performance, with smaller batch sizes leading to more stable models. By comparing the performance of different prediction models using various error evaluation metrics, this study finds that the proposed model exhibits the most stable performance. The research findings can be applied to rapidly predict future traffic volumes for several periods based on the instantaneous queue length at the end of the red signal phase, providing reliable, accurate, and timely data for urban traffic signal control.
引用
收藏
页码:103502 / 103510
页数:9
相关论文
共 50 条
  • [31] PredictionNet: a long short-term memory-based attention network for atmospheric turbulence prediction in adaptive optics
    Wu, Ji
    Tang, Ju
    Zhang, Mengmeng
    Di, Jianglei
    Hu, Liusen
    Wu, Xiaoyan
    Liu, Guodong
    Zhao, Jianlin
    APPLIED OPTICS, 2022, 61 (13) : 3687 - 3694
  • [32] A long short-term memory-based framework for crash detection on freeways with traffic data of different temporal resolutions
    Jiang, Feifeng
    Yuen, Kwok Kit Richard
    Lee, Eric Wai Ming
    ACCIDENT ANALYSIS AND PREVENTION, 2020, 141
  • [33] Short-Term Traffic Flow Prediction Based on a K-Nearest Neighbor and Bidirectional Long Short-Term Memory Model
    Zhuang, Weiqing
    Cao, Yongbo
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [34] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [35] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [36] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [37] Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory
    XUE Wendong
    CHAI Yuan
    LI Qigan
    HONG Yongqiang
    ZHENG Gaofeng
    Instrumentation, 2018, 5 (04) : 46 - 54
  • [38] Research on short-term disease risk prediction based on long short-term memory
    Feng, Yanjun
    Wang, Hongxia
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 176 - 176
  • [39] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940
  • [40] An Improved Long Short-Term Memory Algorithm for Cardiovascular Disease Prediction
    Revathi, T. K.
    Balasubramaniam, Sathiyabhama
    Sureshkumar, Vidhushavarshini
    Dhanasekaran, Seshathiri
    DIAGNOSTICS, 2024, 14 (03)