AN ADAPTIVE BLOCK ITERATIVE PROCESS FOR A CLASS OF MULTIPLE SETS SPLIT VARIATIONAL INEQUALITY PROBLEMS AND COMMON FIXED POINT PROBLEMS IN HILBERT SPACES

被引:1
|
作者
Rehman, Habib ur [1 ]
Kumam, Poom [1 ]
Suleiman, Yusuf I. [2 ]
Kumam, Widaya [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Sci Lab Bldg,126 Pracha Uthit Rd,Bang Mod,Thung K, Bangkok 10140, Thailand
[2] Kano Univ Sci & Technol, Dept Math, Wudil 713101, Nigeria
[3] Rajamangala Univ Technol Thanyaburi RMUTT, Appl Math Sci & Engn Res Unit AMSERU, Program Appl Stat, Dept Math & Comp Sci,Fac Sci & Technol, Pathum Thani 12110, Thailand
来源
关键词
Variational Inequality Problems; Halpern Subgradient Extragradient Algorithms; Parallel Self-adaptive Algorithms; Common Fixed Point Problems; Multiple Sets Split Variational Inequality Problems; SUBGRADIENT EXTRAGRADIENT METHOD; STRONG-CONVERGENCE; FEASIBILITY PROBLEM; PROJECTION METHOD; ALGORITHMS;
D O I
10.3934/naco.2022007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present extension of a class of split variational inequality problem and fixed point problem due to Lohawech et al. (J. Ineq Appl. 358, 2018) to a class of multiple sets split variational inequality problem and common fixed point problem (CMSSVICFP) in Hilbert spaces. Using the Halpern subgradient extragradient theorem of variational inequality problems, we propose a parallel Halpern subgradient extragradient CQ-method with adaptive step-size for solving the CMSSVICFP. We show that a sequence generated by the proposed algorithm converges strongly to the solution of the CMSSVICFP. We give a numerical example and perform some preliminary numerical tests to illustrate the numerical efficiency of our method.
引用
收藏
页码:273 / 298
页数:26
相关论文
共 50 条