Poisson triple systems

被引:0
|
作者
Bremner, Murray R. [1 ]
Elgendy, Hader A. [2 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
[2] Damietta Univ, Fac Sci, Dept Math, New Damietta, Egypt
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson algebras; Poisson triple systems; universal enveloping algebras; algebraic operads; Koszul operads; computer algebra; ALGEBRAS;
D O I
10.1080/03081087.2022.2053039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce Poisson triple systems, which are vector spaces with 3 trilinear operations satisfying 9 polynomial identities of degree 5. We show that every Poisson triple system has a universal enveloping Poisson algebra. Finally, we briefly discuss operadic aspects of Poisson triple systems.
引用
收藏
页码:1145 / 1157
页数:13
相关论文
共 50 条
  • [31] Triple and Multiple Systems
    Pavel Mayer
    Astrophysics and Space Science, 2005, 296 : 113 - 119
  • [32] Response of dynamic systems under Poisson/delayed-Poisson processes
    Hu, SLJ
    Li, H
    Hou, Z
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 37 - 42
  • [33] LEIBNIZ TRIPLE SYSTEMS
    Bremner, Murray R.
    Sanchez-Ortega, Juana
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (01)
  • [34] INDECOMPOSABLE TRIPLE SYSTEMS
    KRAMER, ES
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A320 - A320
  • [35] On radicals of triple systems
    Kamiya, N
    GROUPS, RINGS, LIE AND HOPF ALGEBRAS, 2003, 555 : 75 - 83
  • [36] The decay of triple systems
    Martynova, A. I.
    Orlov, V. V.
    ASTRONOMY REPORTS, 2014, 58 (10) : 756 - 766
  • [37] Triple and multiple systems
    Mayer, P
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 296 (1-4) : 113 - 119
  • [38] SYSTEMS OF QUOTIENTS OF LIE TRIPLE SYSTEMS
    Ma, Yao
    Chen, Liangyun
    Lin, Jie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (08) : 3339 - 3349
  • [39] POISSON STABILITY OF REVERSIBLE-SYSTEMS
    SOSNITSKII, SP
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1992, 56 (04): : 484 - 491
  • [40] REVERSIBLE POISSON-KIRCHHOFF SYSTEMS
    Boyer, Alexandre
    Casse, Jerome
    Enriquez, Nathanael
    Singh, Arvind
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2023, 151 (01): : 37 - 89