Poisson triple systems

被引:0
|
作者
Bremner, Murray R. [1 ]
Elgendy, Hader A. [2 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
[2] Damietta Univ, Fac Sci, Dept Math, New Damietta, Egypt
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson algebras; Poisson triple systems; universal enveloping algebras; algebraic operads; Koszul operads; computer algebra; ALGEBRAS;
D O I
10.1080/03081087.2022.2053039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce Poisson triple systems, which are vector spaces with 3 trilinear operations satisfying 9 polynomial identities of degree 5. We show that every Poisson triple system has a universal enveloping Poisson algebra. Finally, we briefly discuss operadic aspects of Poisson triple systems.
引用
收藏
页码:1145 / 1157
页数:13
相关论文
共 50 条
  • [1] Splittings of operations for Lie-Poisson triple systems and related algebraic structures
    Ben Hassine, A.
    Chtioui, T.
    Mabrouk, S.
    Zouidi, F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [2] Controllability of Poisson systems
    Birtea, P
    Puta, M
    Ratiu, TS
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (03) : 937 - 954
  • [3] On the triple paranormed sequence space of binomial Poisson matrix
    Esi, A.
    Subramanian, N.
    Ozdemir, M. K.
    INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2018), 2019, 2086
  • [4] Spreading linear triple systems and expander triple systems
    Blazsik, Zoltan L.
    Nagy, Zoltan Lorant
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 89
  • [5] Embedding Steiner triple systems in hexagon triple systems
    Lindner, C. C.
    Quattrocchi, Gaetano
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 487 - 490
  • [6] Learning Poisson Systems and Trajectories of Autonomous Systems via Poisson Neural Networks
    Jin, Pengzhan
    Zhang, Zhen
    Kevrekidis, Ioannis G.
    Karniadakis, George Em
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8271 - 8283
  • [7] POISSON SCHEMES FOR HAMILTONIAN-SYSTEMS ON POISSON MANIFOLDS
    ZHU, WJ
    QIN, MZ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (12) : 7 - 16
  • [8] POISSON AND NON-POISSON BEHAVIOR OF RADIOACTIVE SYSTEMS
    FRIGERIO, NA
    NUCLEAR INSTRUMENTS & METHODS, 1974, 114 (01): : 175 - 177
  • [9] Poisson Integrators Based on Splitting Method for Poisson Systems
    Zhu, Beibei
    Ji, Lun
    Zhu, Aiqing
    Tang, Yifa
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (04) : 1129 - 1155
  • [10] Triple metamorphosis of twofold triple systems
    Lindner, C. C.
    Meszka, M.
    Rosa, A.
    DISCRETE MATHEMATICS, 2013, 313 (19) : 1872 - 1883