NiFe-based tungstate@layered double hydroxide heterostructure supported on graphene as efficient oxygen evolution reaction catalyst

被引:8
|
作者
Song, S. [1 ,3 ]
Fu, Y. [1 ]
Yin, F. [1 ]
Zhang, Y. [2 ]
Ma, J. [1 ]
Liu, Y. [1 ]
Ren, J. [1 ]
Ye, W. [1 ]
Ma, R. [1 ]
机构
[1] Tiangong Univ, Sch Chem Engn & Technol, Tianjin 300387, Peoples R China
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo Inst Sustainable Energy, Dept Chem Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Tiangong Univ, Tianjin Key Lab Green Chem Technol & Proc Engn, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
water electrolysis; oxygen evolution reaction; heterostructure; tungstate; layered double hydroxide; HIGHLY EFFICIENT; WATER OXIDATION; NICKEL (OXY)HYDROXIDE; HYDROGEN EVOLUTION; ELECTROCATALYSTS; ALKALINE; NANOPARTICLES; GENERATION; NANOSHEETS; OXIDE;
D O I
10.1016/j.mtchem.2022.101369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen evolution reaction (OER) plays a key role in water splitting and rechargeable metal-air batteries, thus eagerly demanding efficient, robust, and low-cost electrocatalysts. Two-dimension layered double hydroxides (LDHs) have been widely recognized as one of the most promising OER catalysts due to the high activity and large specific surface area. However, the insufficient electrical conductivity and resis-tance against corrosion seriously restrict their capabilities of charge transport and long-term stability. Herein, a NiFe-based heterostructure catalyst is proposed by the coupling of NiFe-based LDH (termed NiFe-LDH) nanosheets and amorphous NiFe-tungstate (termed NiFeWO4) nanoparticles, both of which possess the same stoichiometric Ni/Fe ratio (3:1), on graphene substrate (termed NiFeWO4@NiFe-LDH/ G). Attributed to the synergy of individual components, NiFeWO4@NiFe-LDH/G exhibits superb elec-trocatalytic activity for OER in an alkaline electrolyte, with extremely low overpotential of 222 mV at a current density of 10 mA cm-2 and Tafel slope of 32.1 mV dec-1, far surpassing the benchmark IrO2 catalyst. Furthermore, NiFeWO4@NiFe-LDH/G exhibits superior stability and durability to IrO2. Comprehensive characterizations and electrochemical measurements together with DFT calculations reveal that the hetero-assembly of NiFe-LDH and NiFeWO4 generates more efficient NiFe active sites than that of the individual components via a strong chemical binding interaction, which can modulate the electronic structures and optimize the energetics of active sites for OER intermediates. As a result, a low cell voltage of 1.48 V is achieved for the water splitting in two-electrode Pt/CkNiFeWO4@NiFe-LDH/G electrolysis cell at 10 mA cm-2, overwhelmingly prevailing over the 1.69 V for the Pt/CkIrO2 benchmark cell. This work provides an ingenious heterostructure design for efficient and stable OER electrocatalysts. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Facile formation of Zn-incorporated NiFe layered double hydroxide as highly-efficient oxygen evolution catalyst
    Zhou, Pengfei
    Chen, Songbo
    Bai, Haoyun
    Liu, Chunfa
    Feng, Jinxian
    Liu, Di
    Qiao, Lulu
    Wang, Shuangpeng
    Pan, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 647 : 65 - 72
  • [22] Design of NiFe-based nanostructures for efficient oxygen evolution electrocatalysis
    Shi, Yue
    Zhang, Dan
    Miao, Hongfu
    Zhan, Tianrong
    Lai, Jianping
    ELECTROCHEMICAL SCIENCE ADVANCES, 2022, 2 (02):
  • [23] Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction
    Chen, Rong
    Hung, Sung-Fu
    Zhou, Daojin
    Gao, Jiajian
    Yang, Cangjie
    Tao, Huabing
    Yang, Hong Bin
    Zhang, Liping
    Zhang, Lulu
    Xiong, Qihua
    Chen, Hao Ming
    Liu, Bin
    ADVANCED MATERIALS, 2019, 31 (41)
  • [24] NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions
    Zhan, Tianrong
    Zhang, Yumei
    Liu, Xiaolin
    Lu, Sisi
    Hou, Wanguo
    JOURNAL OF POWER SOURCES, 2016, 333 : 53 - 60
  • [25] Precious metal-free CoFe layered double hydroxide as an efficient catalyst for oxygen evolution reaction
    Zhang, Yichi
    Gan, Chengqiang
    Jiang, Qianqian
    Lang, Peng
    Wang, Wei
    Tang, Jianguo
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 282
  • [26] Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction
    Zhao, Jia
    Zhang, Ji-Jie
    Li, Zhao-Yang
    Bu, Xian-He
    SMALL, 2020, 16 (51)
  • [27] NiFe Layered Double Hydroxides for Oxygen Evolution Reaction
    Du, Yu
    Liu, Depei
    Yan, Shicheng
    Yu, Tao
    Zou, Zhigang
    PROGRESS IN CHEMISTRY, 2020, 32 (09) : 1386 - 1401
  • [28] NiFe layered-double-hydroxide nanosheet arrays grown in situ on Ni foam for efficient oxygen evolution reaction
    Dai, Jiaqi
    Zhang, Yuxing
    Song, Haosen
    Liu, Lu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 130 - 137
  • [29] Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction
    Zhang, Cong
    Shao, Mingfei
    Zhou, Lei
    Li, Zhenhua
    Xiao, Kaiming
    Wei, Min
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) : 33697 - 33703
  • [30] Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction
    Chi, Jun
    Yu, Hongmei
    Jiang, Guang
    Jia, Jia
    Qin, Bowen
    Yi, Baolian
    Shao, Zhigang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (08) : 3397 - 3401