Functional Bayesian networks for discovering causality from multivariate functional data

被引:1
|
作者
Zhou, Fangting [1 ,2 ]
He, Kejun [2 ]
Wang, Kunbo [3 ]
Xu, Yanxun [3 ]
Ni, Yang [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Renmin Univ China, Inst Stat & Big Data, Ctr Appl Stat, Beijing, Peoples R China
[3] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
causal discovery; directed acyclic graphs; multivariate longitudinal/functional data; non-Gaussianity; structure learning; GRAPHICAL MODELS; REGRESSION; SELECTION;
D O I
10.1111/biom.13922
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.
引用
收藏
页码:3279 / 3293
页数:15
相关论文
共 50 条
  • [41] CANONICAL GRANGER CAUSALITY APPLIED TO FUNCTIONAL BRAIN DATA
    Ashrafulla, Syed
    Haldar, Justin P.
    Joshi, Anand A.
    Leahy, Richard M.
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1751 - 1754
  • [42] Discovering Quantitative Temporal Functional Dependencies on Clinical Data
    Combi, Carlo
    Mantovani, Matteo
    Sala, Pietro
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2017, : 248 - 257
  • [43] Discovering Functional Neuronal Connectivity from Serial Patterns in Spike Train Data
    Diekman, Casey
    Dasgupta, Kohinoor
    Nair, Vijay
    Unnikrishnan, K. P.
    [J]. NEURAL COMPUTATION, 2014, 26 (07) : 1263 - 1297
  • [44] A Statistical Perspective on Discovering Functional Dependencies in Noisy Data
    Zhang, Yunjia
    Guo, Zhihan
    Rekatsinas, Theodoros
    [J]. SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 861 - 876
  • [45] Directed Cyclic Graph for Causal Discovery from Multivariate Functional Data
    Roy, Saptarshi
    Wong, Raymond K. W.
    Ni, Yang
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [46] δ-MAPS: From fMRI Data to Functional Brain Networks
    Fountalis, Ilias
    Dovrolis, Constantine
    Dilkina, Bistra
    Keilholz, Sheila
    [J]. COMPLEX NETWORKS & THEIR APPLICATIONS VI, 2018, 689 : 1237 - 1249
  • [47] Spatially penalized registration of multivariate functional data
    Guo, Xiaohan
    Kurtek, Sebastian
    Bharath, Karthik
    [J]. SPATIAL STATISTICS, 2023, 56
  • [48] Conformal prediction bands for multivariate functional data
    Diquigiovanni, Jacopo
    Fontana, Matteo
    Vantini, Simone
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [49] AN OUTLYINGNESS MATRIX FOR MULTIVARIATE FUNCTIONAL DATA CLASSIFICATION
    Dai, Wenlin
    Genton, Marc G.
    [J]. STATISTICA SINICA, 2018, 28 (04) : 2435 - 2454
  • [50] Discriminant coordinates analysis for multivariate functional data
    Hanusz, Zofia
    Krzysko, Miroslaw
    Nadulski, Rafal
    Waszak, Lukasz
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4506 - 4519