DEEP LEARNING TO PREDICT PAP ADHERENCE IN OBSTRUCTIVE SLEEP APNEA

被引:0
|
作者
Rusk, Samuel [1 ]
Nygate, Yoav [1 ]
Fernandez, Chris [1 ]
Shi, Jiaxiao M. [2 ]
Arguelles, Jessica [2 ]
Klimper, Matthew T. [2 ]
Watson, Nathaniel F. [3 ]
Stretch, Robert [4 ]
Zeidler, Michelle [5 ]
Sekhon, Anupamjeet [2 ]
Becker, Kendra [2 ]
Kim, Joseph [2 ]
Hwang, Dennis [2 ]
机构
[1] EnsoData, Madison, WI USA
[2] Kaiser Permanente, Rancho Cucamonga, CA USA
[3] Univ Washington, Seattle, WA USA
[4] Beth Israel Deaconess, Boston, MA USA
[5] Univ Calif Los Angeles, Dept Med, David Geffen Sch Med, Los Angeles, CA USA
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
0464
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry
    Levy, Jeremy
    alvarez, Daniel
    Del Campo, Felix
    Behar, Joachim A.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [42] Obstructive Sleep Apnea Classification Using Snore Sounds Based on Deep Learning
    Sillaparaya, Apichada
    Bhatranand, Apichai
    Sudthongkong, Chudanat
    Chamnongthai, Kosin
    Jiraraksopakun, Yuttapong
    [J]. PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1152 - 1155
  • [43] Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea
    Hemrajani, Prashant
    Dhaka, Vijaypal Singh
    Rani, Geeta
    Shukla, Praveen
    Bavirisetti, Durga Prasad
    [J]. SENSORS, 2023, 23 (10)
  • [44] Detecting obstructive sleep apnea by craniofacial image-based deep learning
    He, Shuai
    Su, Hang
    Li, Yanru
    Xu, Wen
    Wang, Xingjun
    Han, Demin
    [J]. SLEEP AND BREATHING, 2022, 26 (04) : 1885 - 1895
  • [45] Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry
    Jeremy Levy
    Daniel Álvarez
    Félix Del Campo
    Joachim A. Behar
    [J]. Nature Communications, 14
  • [46] Improvement of sleep parameters by titration polysomnography could predict adherence to positive airway pressure therapy in obstructive sleep apnea
    Shirahata, Toru
    Uchida, Yoshitaka
    Uchida, Takahiro
    Shinomiya, Shun
    Sato, Hideaki
    Yamazaki, Susumu
    Yogi, Sanehiro
    Masaki, Kenji
    Akagami, Tomoe
    Soma, Machika
    Ohmura, Kazuyuki
    Miyashita, Tatsuyuki
    Kanazawa, Minoru
    Nagata, Makoto
    Nakamura, Hidetoshi
    [J]. JOURNAL OF CLINICAL SLEEP MEDICINE, 2023, 19 (08): : 1465 - 1473
  • [47] Mixed Apnea Metrics in Obstructive Sleep Apnea Predict Treatment-Emergent Central Sleep Apnea
    Pavsic, Katja
    Herkenrath, Simon
    Treml, Marcel
    Hagmeyer, Lars
    Khayat, Rami N.
    Hellmich, Martin
    Randerath, Winfried J.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (06) : 772 - 775
  • [48] Machine Learning Validated Screening Tool to Predict Obstructive Sleep Apnea in Cancer Patients
    Paul, A.
    Wong, K. A.
    Das, A.
    Lim, D. C.
    Tan, M.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [49] Application of various machine learning techniques to predict obstructive sleep apnea syndrome severity
    Han, Hyewon
    Oh, Junhyoung
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Application of various machine learning techniques to predict obstructive sleep apnea syndrome severity
    Hyewon Han
    Junhyoung Oh
    [J]. Scientific Reports, 13