Large Language Models and the Reverse Turing Test

被引:47
|
作者
Sejnowski, Terrence J. [1 ,2 ]
机构
[1] Salk Inst Biol Studies, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92037 USA
关键词
LEARNING ALGORITHM; NEUROSCIENCE;
D O I
10.1162/neco_a_01563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large language models (LLMs) have been transformative. They are pretrained foundational models that are self-supervised and can be adapted with fine-tuning to a wide range of natural language tasks, each of which previously would have required a separate network model. This is one step closer to the extraordinary versatility of human language. GPT-3 and, more recently, LaMDA, both of them LLMs, can carry on dialogs with humans on many topics after minimal priming with a few examples. However, there has been a wide range of reactions and debate on whether these LLMs understand what they are saying or exhibit signs of intelligence. This high variance is exhibited in three interviews with LLMs reaching wildly different conclusions. A new possibility was uncovered that could explain this divergence. What appears to be intelligence in LLMs may in fact be a mirror that reflects the intelligence of the interviewer, a remarkable twist that could be considered a reverse Turing test. If so, then by studying interviews, we may be learning more about the intelligence and beliefs of the interviewer than the intelligence of the LLMs. As LLMs become more capable, they may transform the way we interact with machines and how they interact with each other. Increasingly, LLMs are being coupled with sensorimotor devices. LLMs can talk the talk, but can they walk the walk? A road map for achieving artificial general autonomy is outlined with seven major improvements inspired by brain systems and how LLMs could in turn be used to uncover new insights into brain function.
引用
收藏
页码:309 / 342
页数:34
相关论文
共 50 条
  • [41] The Importance of Understanding Language in Large Language Models
    Youssef, Alaa
    Stein, Samantha
    Clapp, Justin
    Magnus, David
    AMERICAN JOURNAL OF BIOETHICS, 2023, 23 (10): : 6 - 7
  • [42] Dissociating language and thought in large language models
    Mahowald, Kyle
    Ivanova, Anna A.
    Blank, Idan A.
    Kanwisher, Nancy
    Tenenbaum, Joshua B.
    Fedorenko, Evelina
    TRENDS IN COGNITIVE SCIENCES, 2024, 28 (06) : 517 - 540
  • [43] On the creativity of large language models
    Franceschelli, Giorgio
    Musolesi, Mirco
    AI & SOCIETY, 2024,
  • [44] Large language models and psychiatry
    Orru, Graziella
    Melis, Giulia
    Sartori, Giuseppe
    INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY, 2025, 101
  • [45] Large Language Models in Cyberattacks
    S. V. Lebed
    D. E. Namiot
    E. V. Zubareva
    P. V. Khenkin
    A. A. Vorobeva
    D. A. Svichkar
    Doklady Mathematics, 2024, 110 (Suppl 2) : S510 - S520
  • [46] The Turing thesis vs. the Turing test
    Rey, Georges
    TPM-THE PHILOSOPHERS MAGAZINE, 2012, (57): : 84 - 89
  • [47] Autoformalization with Large Language Models
    Wu, Yuhuai
    Jiang, Albert Q.
    Li, Wenda
    Rabe, Markus N.
    Staats, Charles
    Jamnik, Mateja
    Szegedy, Christian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [48] Imitation and Large Language Models
    Boisseau, Eloise
    MINDS AND MACHINES, 2024, 34 (04)
  • [49] The Smallness of Large Language Models
    Denning, Peter J.
    COMMUNICATIONS OF THE ACM, 2023, 66 (09) : 24 - 27
  • [50] Large language models in medicine
    Thirunavukarasu, Arun James
    Ting, Darren Shu Jeng
    Elangovan, Kabilan
    Gutierrez, Laura
    Tan, Ting Fang
    Ting, Daniel Shu Wei
    NATURE MEDICINE, 2023, 29 (08) : 1930 - 1940