Subgroup Analysis for Longitudinal Data via Semiparametric Additive Mixed Effects Model

被引:2
|
作者
Bo, Xiaolin [1 ]
Zhang, Weiping [1 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive model; backfitting; mixed effects; subgroup identification; REGRESSION SPLINES; IDENTIFICATION; ASYMPTOTICS; PROFILES; TREES;
D O I
10.1007/s11424-023-2011-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposed a general framework based on semiparametric additive mixed effects model to identify subgroups on each covariate and estimate the corresponding regression functions simultaneously for longitudinal data, thus it could reveal which covariate contributes to the existence of subgroups among population. A backfitting combined with k-means algorithm was developed to detect subgroup structure on each covariate and estimate each semiparametric additive component across subgroups. A Bayesian information criterion is employed to estimate the actual number of groups. The efficacy and accuracy of the proposed procedure in identifying the subgroups and estimating the regression functions are illustrated through numerical studies. In addition, the authors demonstrate the usefulness of the proposed method with applications to PBC data and Industrial Portfolio's Return data and provide meaningful partitions of the populations.
引用
收藏
页码:2155 / 2185
页数:31
相关论文
共 50 条
  • [1] Subgroup Analysis for Longitudinal Data via Semiparametric Additive Mixed Effects Model
    BO Xiaolin
    ZHANG Weiping
    Journal of Systems Science & Complexity, 2023, 36 (05) : 2155 - 2185
  • [2] Subgroup Analysis for Longitudinal Data via Semiparametric Additive Mixed Effects Model
    Xiaolin Bo
    Weiping Zhang
    Journal of Systems Science and Complexity, 2023, 36 : 2155 - 2185
  • [3] A semiparametric additive regression model for longitudinal data
    Martinussen, T
    Scheike, TH
    BIOMETRIKA, 1999, 86 (03) : 691 - 702
  • [4] A semiparametric mixed-effects model for censored longitudinal data
    Mattos, Thalita B.
    Matos, Larissa Avila
    Lachos, Victor H.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2582 - 2603
  • [5] A semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data
    Ji, Kexin
    Dubin, Joel A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (03): : 471 - 498
  • [6] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [7] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    BMC Medical Research Methodology, 24
  • [8] Subgroup analysis based on structured mixed-effects models for longitudinal data
    Shen, Juan
    Qu, Annie
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2020, 30 (04) : 607 - 622
  • [9] Semiparametric analysis for additive risk model via empirical likelihood
    Zhao, YC
    Hsu, YS
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (01) : 135 - 143
  • [10] A Semiparametric Threshold Model for Censored Longitudinal Data Analysis
    Li, Jialiang
    Zhang, Wenyang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 685 - 696