Iterative refinement method by higher-order singular value decomposition for solving multi-linear systems

被引:2
|
作者
Cui, Lu-Bin [1 ]
Hu, Wen-Li [1 ]
Yuan, Jin-Yun [2 ,3 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contro, Xinxiang 453007, Peoples R China
[2] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[3] Univ Fed Parana, Ctr Politecn, Dept Matemat, BR-81531980 Curitiba, Brazil
关键词
Iterative refinement method; Higher-order singular value; decomposition; Multi-linear systems; LU decomposition;
D O I
10.1016/j.aml.2023.108819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the higher-order singular value decomposition and the LU decomposition are applied to solve the general multi-linear systems, rather than special structure like M-tensor. Here, we transform the general tensor system into a form with a special structure. In addition, an iterative refinement method is constructed by the information of the coefficient tensor itself, the higher-order singular value, instead of the spectra of iterative tensor. Finally, the numerical experimental results are given to demonstrate the efficiency of the iterative refinement method. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An Iterative Method for Tensor Inpainting Based on Higher-Order Singular Value Decomposition
    Yeganli, S. F.
    Yu, R.
    Demirel, H.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3827 - 3841
  • [2] An Iterative Method for Tensor Inpainting Based on Higher-Order Singular Value Decomposition
    S. F. Yeganli
    R. Yu
    H. Demirel
    Circuits, Systems, and Signal Processing, 2018, 37 : 3827 - 3841
  • [3] A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems
    Kim, Weonbae
    Chun, Changbum
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (12): : 1093 - 1100
  • [4] A tensor bidiagonalization method for higher-order singular value decomposition with applications
    El Hachimi, A.
    Jbilou, K.
    Ratnani, A.
    Reichel, L.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (02)
  • [5] The Higher-Order Singular Value Decomposition: Theory and an Application
    Bergqvist, Goran
    Larsson, Erik G.
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) : 151 - 154
  • [6] Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decomposition method
    Hasan, Yahya Qaid
    Zhu, Liu Ming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) : 2592 - 2596
  • [7] On higher-order singular discrete linear systems
    Kalogeropoulos, GI
    Papachristopoulos, DP
    PROCEEDINGS OF THE 25TH IASTED INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION, AND CONTROL, 2006, : 61 - +
  • [8] SOLVING A HIGHER-ORDER LINEAR DISCRETE SYSTEMS
    Diblik, J.
    Mencakova, K.
    MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2017, 2017, : 77 - 91
  • [9] Acceleration of iterative refinement for singular value decomposition
    Uchino, Yuki
    Terao, Takeshi
    Ozaki, Katsuhisa
    NUMERICAL ALGORITHMS, 2024, 95 (02) : 979 - 1009
  • [10] Acceleration of iterative refinement for singular value decomposition
    Yuki Uchino
    Takeshi Terao
    Katsuhisa Ozaki
    Numerical Algorithms, 2024, 95 : 979 - 1009