Triterpenic Acid Amides as Potential Inhibitors of the SARS-CoV-2 Main Protease

被引:9
|
作者
Baev, Dmitry S. [1 ]
Blokhin, Mikhail E. [1 ]
Chirkova, Varvara Yu. [2 ]
Belenkaya, Svetlana V. [3 ]
Luzina, Olga A. [1 ]
Yarovaya, Olga I. [1 ]
Salakhutdinov, Nariman F. [1 ]
Shcherbakov, Dmitry N. [3 ]
机构
[1] NN Vorozhtsov Novosibirsk Inst Organ Chem, 9 Lavrentiev Ave, Novosibirsk 630090, Russia
[2] Altay State Univ, Dept Phys Chem Biol & Biotechnol, 61 Lenina Ave, Barnaul 656049, Russia
[3] Rospotrebnadzor, State Res Ctr Virol & Biotechnol VECTOR, Koltsov 630559, Russia
来源
MOLECULES | 2023年 / 28卷 / 01期
关键词
triterpene amide; SARS-CoV-2; main protease; molecular modeling; FRET; antiviral; ANTIVIRAL ACTIVITY; CONSTITUENTS; DERIVATIVES;
D O I
10.3390/molecules28010303
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the incidence and mortality of SARS-CoV-2 infection has been declining during the pandemic, the problem related to designing novel antiviral drugs that could effectively resist viruses in the future remains relevant. As part of our continued search for chemical compounds that are capable of exerting an antiviral effect against the SARS-CoV-2 virus, we studied the ability of triterpenic acid amides to inhibit the SARS-CoV-2 main protease. Molecular modeling suggested that the compounds are able to bind to the active site of the main protease via non-covalent interactions. The FRET-based enzyme assay was used to reveal that compounds 1e and 1b can inhibit the SARS-CoV-2 main protease at micromolar concentrations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Sayed, Ahmed M.
    Alhadrami, Hani A.
    El-Gendy, Ahmed O.
    Shamikh, Yara, I
    Belbahri, Lassaad
    Hassan, Hossam M.
    Abdelmohsen, Usama Ramadan
    Rateb, Mostafa E.
    MICROORGANISMS, 2020, 8 (07) : 1 - 17
  • [22] Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors
    Jimenez-Alberto, Alicia
    Maria Ribas-Aparicio, Rosa
    Aparicio-Ozores, Gerardo
    Castelan-Vega, Juan A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 88 (88)
  • [23] In silico screening of potential antiviral inhibitors against SARS-CoV-2 main protease
    Palanisamy, Kandhan
    Maiyelvaganan, K. Rudharachari
    Kamalakannan, Shanmugasundaram
    Thilagavathi, Ramasamy
    Selvam, Chelliah
    Prakash, Muthuramalingam
    MOLECULAR SIMULATION, 2023, 49 (02) : 175 - 185
  • [24] Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method
    Zhang, Huijun
    Liang, Boqiang
    Sang, Xiaohong
    An, Jing
    Huang, Ziwei
    VIRUSES-BASEL, 2023, 15 (04):
  • [25] Computational Repurposing of Potential Dimerization Inhibitors against SARS-CoV-2 Main Protease
    Borkotoky, Subhomoi
    Prakash, Archisha
    Modi, Gyan Prakash
    Dubey, Vikash Kumar
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (04) : 799 - 808
  • [26] Structure-based identification of potential SARS-CoV-2 main protease inhibitors
    Khan, Shama
    Fakhar, Zeynab
    Hussain, Afzal
    Ahmad, Aijaz
    Jairajpuri, Deeba Shamim
    Alajmi, Mohamed F.
    Hassan, Md. Imtaiyaz
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (08): : 3595 - 3608
  • [27] Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors:in silicoanalysis
    Al-Sehemi, Abdullah G.
    Pannipara, Mehboobali
    Parulekar, Rishikesh S.
    Patil, Omkar
    Choudhari, Prafulla B.
    Bhatia, M. S.
    Zubaidha, P. K.
    Tamboli, Yasinalli
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (15): : 5804 - 5818
  • [28] Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease
    Benalia, Abdelkrim
    Abdeldjebar, Hasnia
    Badji, Taqiy Eddine
    FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY, 2022, 10 (01): : 48 - 59
  • [29] Natural compounds as potential inhibitors of SARS-CoV-2 main protease: An insilico study
    Amaresh Mishra
    Yamini Pathak
    Anuj Kumar
    Surabhi Kirti Mishra
    Vishwas Tripathi
    Asian Pacific Journal of Tropical Biomedicine, 2021, 11 (04) : 155 - 163
  • [30] Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug
    Isgro, Camilla
    Sardanelli, Anna Maria
    Palese, Luigi Leonardo
    VIRUSES-BASEL, 2021, 13 (01):