Influence of Surface Chemistry on Host/Guest Interactions: A Model Study on Redox-Sensitive β-Cyclodextrin/Ferrocene Complexes

被引:1
|
作者
Chabaud, Baptiste [1 ]
Bonnet, Hugues [1 ]
Lartia, Remy [1 ]
Van Der Heyden, Angeline [1 ]
Auzely-Velty, Rachel [2 ]
Boturyn, Didier [1 ]
Coche-Guerente, Liliane [1 ]
Dubacheva, Galina V. [1 ]
机构
[1] Univ Grenoble Alpes, Dept Chim Mol, CNRS, UMR 5250, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CERMAV, CNRS, F-38041 Grenoble 9, France
关键词
SELF-ASSEMBLED MONOLAYERS; HOST-GUEST INTERACTIONS; ELECTRON-TRANSFER; FERROCENE DERIVATIVES; SUPRAMOLECULAR CHEMISTRY; TERMINATED MONOLAYERS; MOLECULAR PRINTBOARDS; GOLD; INCLUSION; MULTIVALENCY;
D O I
10.1021/acs.langmuir.3c03279
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While host/guest interactions are widely used to control molecular assembly on surfaces, quantitative information on the effect of surface chemistry on their efficiency is lacking. To address this question, we combined electrochemical characterization with quartz crystal microbalance with dissipation monitoring to study host/guest interactions between surface-attached ferrocene (Fc) guests and soluble beta-cyclodextrin (beta-CD) hosts. We identified several parameters that influence the redox response, beta-CD complexation ability, and repellent properties of Fc monolayers, including the method of Fc grafting, the linker connecting Fc with the surface, and the diluting molecule used to tune Fc surface density. The study on monovalent beta-CD/Fc complexation was completed by the characterization of multivalent interactions between Fc monolayers and beta-CD-functionalized polymers, with new insights being obtained on the interplay between the surface chemistry, binding efficiency, and reversibility under electrochemical stimulus. These results should facilitate the design of well-defined functional interfaces and their implementation in stimuli-responsive materials and sensing devices.
引用
下载
收藏
页码:4646 / 4660
页数:15
相关论文
共 50 条