An Adaptive Fast-Multipole-Accelerated Hybrid Boundary Integral Equation Method for Accurate Diffusion Curves

被引:1
|
作者
Bang, Seungbae [1 ,2 ]
Serkh, Kirill [1 ]
Stein, Oded [3 ,4 ,5 ]
Jacobson, Alec [1 ,6 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Amazon, Seattle, WA 98109 USA
[3] Columbia Univ, New York, NY 10027 USA
[4] MIT, Cambridge, MA 02139 USA
[5] Univ Southern Calif, Los Angeles, CA 90007 USA
[6] Adobe Res, Toronto, ON, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
加拿大自然科学与工程研究理事会; 瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
Diffusion Curve; Boundary Element Method; Boundary Integral Equation Method; Fast Multipole Method;
D O I
10.1145/3618374
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In theory, diffusion curves promise complex color gradations for infinite-resolution vector graphics. In practice, existing realizations suffer from poor scaling, discretization artifacts, or insufficient support for rich boundary conditions. Previous applications of the boundary element method to diffusion curves have relied on polygonal approximations, which either forfeit the high-order smoothness of Bezier curves, or, when the polygonal approximation is extremely detailed, result in large and costly systems of equations that must be solved. In this paper, we utilize the boundary integral equation method to accurately and efficiently solve the underlying partial differential equation. Given a desired resolution and viewport, we then interpolate this solution and use the boundary element method to render it. We couple this hybrid approach with the fast multipole method on a non-uniform quadtree for efficient computation. Furthermore, we introduce an adaptive strategy to enable truly scalable infinite-resolution diffusion curves.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Fast multipole accelerated boundary knot method for inhomogeneous Helmholtz problems
    Jiang, Xinrong
    Chen, Wen
    Chen, C. S.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (10) : 1239 - 1243
  • [32] Preconditioned fast adaptive multipole boundary-element method
    Buchau, A
    Rucker, WM
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 461 - 464
  • [33] A fast and accurate algorithm for a Galerkin boundary integral method
    Wang, J
    Crouch, SL
    Mogilevskaya, SG
    COMPUTATIONAL MECHANICS, 2005, 37 (01) : 96 - 109
  • [34] A fast and accurate algorithm for a Galerkin boundary integral method
    J. Wang
    S. L. Crouch
    S. G. Mogilevskaya
    Computational Mechanics, 2005, 37 : 96 - 109
  • [35] A new adaptive algorithm for the fast multipole boundary element method
    Bapat, M.S.
    Liu, Y.J.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (02): : 161 - 183
  • [36] A New Adaptive Algorithm for the Fast Multipole Boundary Element Method
    Bapat, M. S.
    Liu, Y. J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 161 - 183
  • [37] Fast multipole integral equation method for VLSI interconnect inductance calculation
    Wang, Xiaoli
    Luo, Xianjue
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 1800 - 1803
  • [38] Ships Magnetic Anomaly Computation With Integral Equation and Fast Multipole Method
    Nguyen, T. -S.
    Guichon, J. -M.
    Chadebec, O.
    Labie, P.
    Coulomb, J. -L.
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) : 1414 - 1417
  • [39] A fast multipole hybrid boundary node method for composite materials
    Wang, Qiao
    Miao, Yu
    Zhu, Hongping
    COMPUTATIONAL MECHANICS, 2013, 51 (06) : 885 - 897
  • [40] A fast multipole hybrid boundary node method for composite materials
    Qiao Wang
    Yu Miao
    Hongping Zhu
    Computational Mechanics, 2013, 51 : 885 - 897