Novel grey wolf optimizer based parameters selection for GARCH and ARIMA models for stock price prediction

被引:1
|
作者
Bagalkot, Sneha S. [1 ,2 ]
Dinesha, H. A. [1 ,3 ]
Naik, Nagaraj [4 ]
机构
[1] Bengaluru & Visvesvaraya Technol Univ, Nagarjuna Coll Engn & Technol, Belagavi, India
[2] BMS Coll Engn, Bengaluru, India
[3] SIET, Tumkur, Karnataka, India
[4] Manipal Acad Higher Educ MAHE, Manipal Inst Technol, Comp Sci & Engn, Manipal, Karnataka, India
关键词
ARIMA; GARCH; GWO; Stock price; Parameter selection; VOLATILITY;
D O I
10.7717/peerj-cs.1735
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stock price data often exhibit nonlinear patterns and dynamics in nature. The parameter selection in generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive integrated moving average (ARIMA) models is challenging due to stock price volatility. Most studies examined the manual method for parameter selection in GARCH and ARIMA models. These procedures are time-consuming and based on trial and error. To overcome this, we considered a GWO method for finding the optimal parameters in GARCH and ARIMA models. The motivation behind considering the grey wolf optimizer (GWO) is one of the popular methods for parameter optimization. The novel GWO-based parameters selection approach for GARCH and ARIMA models aims to improve stock price prediction accuracy by optimizing the parameters of ARIMA and GARCH models. The hierarchical structure of GWO comprises four distinct categories: alpha (alpha), beta (beta), delta (delta) and omega (omega). The predatory conduct of wolves primarily encompasses the act of pursuing and closing in on the prey, tracing the movements of the prey, and ultimately launching an attack on the prey. In the proposed context, attacking prey is a selection of the best parameters for GARCH and ARIMA models. The GWO algorithm iteratively updates the positions of wolves to provide potential solutions in the search space in GARCH and ARIMA models. The proposed model is evaluated using root mean squared error (RMSE), mean squared error (MSE), and mean absolute error (MAE). The GWO-based parameter selection for GARCH and ARIMA improves the performance of the model by 5% to 8% compared to existing traditional GARCH and ARIMA models.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer
    Ali, M.
    El-Hameed, M. A.
    Farahat, M. A.
    RENEWABLE ENERGY, 2017, 111 : 455 - 462
  • [32] Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced Grey Wolf Optimizer
    Xie, Hailun
    Zhang, Li
    Lim, Chee Peng
    IEEE ACCESS, 2020, 8 : 161519 - 161541
  • [33] A Novel Hybrid Method of Global Optimization Based on the Grey Wolf Optimizer and the Bees Algorithm
    Konstantinov, S. V.
    Khamidova, U. K.
    Sofronova, E. A.
    PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2018 (INTELS'18), 2019, 150 : 471 - 477
  • [34] Retraction Note: Grey Wolf optimization-Elman neural network model for stock price prediction
    S. Kumar Chandar
    Soft Computing, 2024, 28 (Suppl 2) : 815 - 815
  • [35] Unsupervised hyperspectral feature selection based on fuzzy c-means and grey wolf optimizer
    Xie, Fuding
    Lei, Cunkuan
    Li, Fangfei
    Huang, Dan
    Yang, Jun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (09) : 3344 - 3367
  • [36] S-shaped grey wolf optimizer-based FOX algorithm for feature selection
    Feda, Afi Kekeli
    Adegboye, Moyosore
    Adegboye, Oluwatayomi Rereloluwa
    Agyekum, Ephraim Bonah
    Mbasso, Wulfran Fendzi
    Kamel, Salah
    HELIYON, 2024, 10 (02)
  • [37] Threshold Binary Grey Wolf Optimizer Based on Multi-Elite Interaction for Feature Selection
    Wu, Hongzhuo
    Du, Shiyu
    Zhang, Yiming
    Zhang, Quan
    Duan, Kai
    Lin, Yanru
    IEEE ACCESS, 2023, 11 : 34332 - 34348
  • [38] Feature Selection of Grey Wolf Optimizer Based on Quantum Computing and Uncertain Symmetry Rough Set
    Zhao, Guobao
    Wang, Haiying
    Jia, Deli
    Wang, Quanbin
    SYMMETRY-BASEL, 2019, 11 (12):
  • [39] A novel grey wolf optimizer and its applications in 5G frequency selection surface design
    He, Zhihao
    Jin, Gang
    Wang, Yingjun
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (09) : 1338 - 1353
  • [40] A novel grey wolf optimizer and its applications in 5G frequency selection surface design
    He, Zhihao
    Jin, Gang
    Wang, Yingjun
    Frontiers of Information Technology and Electronic Engineering, 2022, 23 (09): : 1338 - 1353