An efficient and scalable SPARQL query processing framework for big data using MapReduce and hybrid optimum load balancing

被引:0
|
作者
Kumar, V. Naveen [1 ]
Kumar, P. S. Ashok [2 ]
机构
[1] Visvesvaraya Technol Univ, Don Bosco Inst Technol, Bengaluru 560074, Karnataka, India
[2] Visvesvaraya Technol Univ, ACS Coll Engn, Dept CSE, Bengaluru 560074, Karnataka, India
关键词
RDF data storage; SPARQL querying; Hadoop; Extended vertical partitioning; Hybrid optimum load balancing; RDF DATA;
D O I
10.1016/j.datak.2023.102239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing RDF (Resource Description Framework) data volume requires a Hadoop platform for processing queries over large datasets. In this work, SPARQL (Simple Protocol and Rdf Query Language) queries are evaluated with Hadoop based on the objective of minimizing the number of joins through data partitioning for performing map/reduce jobs. The query evaluation time and the number of cross node joins are minimized with the proposed partitioning techniques. Extended vertical partitioning is proposed for distributed data stores based on objects' explicit information for splitting predicates. For accessing the RDF data, hybrid monarch butterfly with beetle swarm load balancing optimization with Map-reduce (Hybrid Optimum Load Balancing) is applied. The proposed SPARQL query processing is evaluated over large RDF datasets. The proposed approach's evaluation results are analyzed with the existing approaches, indicating the proposed framework's efficiency. By using the proposed approach, an accuracy of 97 % is obtained.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] HULA: Scalable Load Balancing Using Programmable Data Planes
    Katta, Naga
    Hira, Mukesh
    Kim, Changhoon
    Sivaraman, Anirudh
    Rexford, Jennifer
    [J]. SYMPOSIUM ON SOFTWARE DEFINED NETWORKING (SDN) RESEARCH (SOSR'16), 2016,
  • [42] Composable and Efficient Functional Big Data Processing Framework
    Wu, Dongyao
    Sakr, Sherif
    Zhu, Liming
    Lu, Qinghua
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 279 - 286
  • [43] Optimizing SPARQL Query Processing on Dynamic and Static Data Based on Query Time/Freshness Requirements Using Materialization
    Dehghanzadeh, Soheila
    Parreira, Josiane Xavier
    Karnstedt, Marcel
    Umbrich, Juergen
    Hauswirth, Manfred
    Decker, Stefan
    [J]. SEMANTIC TECHNOLOGY (JIST 2014), 2015, 8943 : 257 - 270
  • [44] A Big Data Prediction Framework for Weather Forecast Using MapReduce Algorithm
    Adam, Khalid
    Majid, Mazlina Abdul
    Fakherldin, Mohammed Adam Ibrahim
    Zain, Jasni Mohamed
    [J]. ADVANCED SCIENCE LETTERS, 2017, 23 (11) : 11138 - 11143
  • [45] CrossBal: Data and Control Plane Cooperation for Efficient and Scalable Network Load Balancing
    Coelho, Bruno L.
    Schaeffer-Filho, Alberto E.
    [J]. 2023 19TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT, CNSM, 2023,
  • [46] A Survey on Geographically Distributed Big-Data Processing Using MapReduce
    Dolev, Shlomi
    Florissi, Patricia
    Gudes, Ehud
    Sharma, Shantanu
    Singer, Ido
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2019, 5 (01) : 60 - 80
  • [47] Big Data Framework for Scalable and Efficient Biomedical Literature Mining in the Cloud
    Shen, Zhengru
    Wang, Xi
    Spruit, Marco
    [J]. NLPIR 2019: 2019 3RD INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, 2019, : 80 - 86
  • [48] Ignis: An efficient and scalable multi-language Big Data framework
    Pineiro, Cesar
    Martinez-Castano, Rodrigo
    Pichel, Juan C.
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 105 : 705 - 716
  • [49] Enabling Big Data Analytics in the Hybrid Cloud using Iterative MapReduce
    Clemente-Castello, Francisco J.
    Nicolae, Bogdan
    Katrinis, Kostas
    Rafique, M. Mustafa
    Mayo, Rafael
    Carlos Fernandez, Juan
    Loreti, Daniela
    [J]. 2015 IEEE/ACM 8TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC), 2015, : 290 - 299
  • [50] Efficient Querying Distributed Big-XML Data using MapReduce
    Song Kunfang
    Hongwei Lu
    [J]. INTERNATIONAL JOURNAL OF GRID AND HIGH PERFORMANCE COMPUTING, 2016, 8 (03) : 70 - 79