Entanglement entropy of a Rarita-Schwinger field in a sphere

被引:3
|
作者
Benedetti, Valentin [1 ,2 ]
Daguerre, Lucas [3 ]
机构
[1] Ctr Atom Bariloche, R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina
[2] Consejo Nacl Invest Cient & Tecn, R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Calif Davis, Ctr Quantum Math & Phys QMAP, Dept Phys & Astron, Davis, CA 95616 USA
关键词
CONFORMAL-INVARIANCE; REPRESENTATIONS;
D O I
10.1103/PhysRevD.108.086015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d = 4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1=2 field case by employing a dimensional reduction to the d = 2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11=90 is consistent with the literature. For the free massless spin-3=2 field, the RaritaSchwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1=2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71=90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.
引用
下载
收藏
页数:22
相关论文
共 50 条