Cascading Blend Network for Image Inpainting

被引:5
|
作者
Jin, Yiting [1 ]
Wu, Jie [1 ]
Wang, Wanliang [1 ]
Yan, Yidong [1 ]
Jiang, Jiawei [1 ]
Zheng, Jianwei [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Liuhe Rd, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Image inpainting; deep convolutional networks; large-proportion corrupted images; attention-based; multi-scale context blend;
D O I
10.1145/3608952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image inpainting refers to filling in unknown regions with known knowledge, which is in full flourish accompanied by the popularity and prosperity of deep convolutional networks. Current inpainting methods have excelled in completing small-sized corruption or specifically masked images. However, for large-proportion corrupted images, most attention-based and structure-based approaches, though reported with state-of-the-art performance, fail to reconstruct high-quality results due to the short consideration of semantic relevance. To relieve the above problem, in this paper, we propose a novel image inpainting approach, namely cascading blend network (CBNet), to strengthen the capacity of feature representation. As a whole, we introduce an adjacent transfer attention (ATA) module in the decoder, which preserves contour structure reasonably from the deep layer and blends structure-texture information from the shadow layer. In a coarse to delicate manner, a multi-scale contextual blend (MCB) block is further designed to felicitously assemble the multi-stage feature information. In addition, to ensure a high qualified hybrid of the feature information, extra deep supervision is applied to the intermediate features through a cascaded loss. Qualitative and quantitative experiments on the Paris StreetView, CelebA, and Places2 datasets demonstrate the superior performance of our approach compared with most state-of-the-art algorithms.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A multi-level feature integration network for image inpainting
    Tao Chen
    Xin Zhang
    Bernd Hamann
    Dongjing Wang
    Hua Zhang
    Multimedia Tools and Applications, 2022, 81 : 38781 - 38802
  • [42] Lucid-GAN: An Adversarial Network for Enhanced Image Inpainting
    Maheshwari, Utkarsh
    Turlapati, Venkata Pavan Kumar
    Kiruthika, Usha
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (IEEE CIVEMSA 2021), 2021,
  • [43] ISRnet: Compressed Image Inpainting Based on Generative Adversarial Network
    Huang, Junjian
    Zheng, Mao
    Li, Zhizhang
    He, Xing
    Wen, Shiping
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [44] Image Inpainting Forensics Algorithm Based on Deep Neural Network
    Zhu Xinshan
    Qian Yongjun
    Sun Biao
    Ren Chao
    Sun Ya
    Yao Siru
    ACTA OPTICA SINICA, 2018, 38 (11)
  • [45] Image Inpainting Using Wasserstein Generative Adversarial Imputation Network
    Vasata, Daniel
    Halama, Tomas
    Friedjungova, Magda
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 575 - 586
  • [46] Semantic face image inpainting based on Generative Adversarial Network
    Zhang, Heshu
    Li, Tao
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 530 - 535
  • [47] Edge-Guided Generative Adversarial Network for Image Inpainting
    Xu, Shunxin
    Liu, Dong
    Xiong, Zhiwei
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [48] Dynamic feature fusion forensics network for deep image inpainting
    Ren H.
    Zhu X.
    Lu J.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2022, 54 (11): : 47 - 58
  • [49] A Generate Adversarial Network with Structural Branch Assistance for Image Inpainting
    Wang, Jin
    Jia, Dongli
    Zhang, Heng
    ELECTRONICS, 2023, 12 (09)
  • [50] Face Image Inpainting Algorithm Based on Generative Adversarial Network
    Miao, Yalin
    Jia, Huanhuan
    Liu, Xuemin
    Zhang, Yang
    Zhao, Liyi
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 282 - 286