Advances in Tunable Bandgaps of Piezoelectric Phononic Crystals

被引:11
|
作者
Wang, Yiwei [1 ]
Xu, Xiaomei [1 ]
Li, Li [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
phononic crystal; piezoelectric ceramics; bandgap characteristics; tunable bandgap; WAVE-PROPAGATION; PERIODIC ARRAYS; VIBRATION CONTROL; BEAMS; METAMATERIALS; ATTENUATION; PLATES; GAPS; LOCALIZATION; RODS;
D O I
10.3390/ma16186285
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bandgaps of traditional phononic crystals (PCs) are determined using structural geometric parameters and material properties, and they are difficult to tune in practical applications. Piezoelectric PCs with lead zirconium titanate piezoelectric ceramics (abbreviated to piezoelectric PCs) have multi-physics coupling effects and their bandgaps can be tuned through external circuits to expand the application range of the PCs. First, the typical structures of piezoelectric PCs are summarized and analyzed. According to the structure, common tunable piezoelectric PCs can be roughly divided into three categories: PCs that only contain piezoelectric materials (single piezoelectric PCs), PCs composed of embedded piezoelectric materials in elastic materials (composite piezoelectric PCs), and PCs that are composed of an elastic base structure and attached piezoelectric patches (patch-type piezoelectric PCs). Second, the tuning methods of bandgaps for piezoelectric PCs are summarized and analyzed. Then, the calculation methods of the bandgaps of piezoelectric PCs are reviewed and analyzed. Finally, conclusions are drawn on the research status of piezoelectric PCs, shortcomings of the existing research are discussed, and future development directions are proposed.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal
    Nguyen, B. H.
    Zhuang, X.
    Park, H. S.
    Rabczuk, T.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (09)
  • [32] Tunable Bandgaps in Phononic Crystal Microbeams Based on Microstructure, Piezo and Temperature Effects
    Hong, Jun
    He, Zhuangzhuang
    Zhang, Gongye
    Mi, Changwen
    CRYSTALS, 2021, 11 (09)
  • [33] Tunable bandgaps and acoustic characteristics of perforated Miura-ori phononic structures
    Zhang, Xi
    Huang, Xiaodong
    Lu, Guoxing
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 253
  • [34] Electrical Evidence of the Tunable Electrical Bragg Bandgaps in Piezoelectric Plates
    Vasseur, Clement
    Croenne, Charles
    Vasseur, Jerome O.
    Dubus, Bertrand
    Mai Pham Thi
    Prevot, Claude
    Hladky-Hennion, Anne-Christine
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (09) : 1552 - 1562
  • [35] Nanostructured Magnonic Crystals with Size-Tunable Bandgaps
    Wang, Zhi Kui
    Zhang, Vanessa Li
    Lim, Hock Siah
    Ng, Ser Choon
    Kuok, Meng Hau
    Jain, Shikha
    Adeyeye, Adekunle Olusola
    ACS NANO, 2010, 4 (02) : 643 - 648
  • [36] THE PROPAGATION OF GAP WAVE IN PIEZOELECTRIC PHONONIC CRYSTALS
    Zhu, Fang-jun
    Zhu, Zhi-wei
    Zhang, Ming-hua
    Zuo, Wan-li
    Du, Jian-ke
    PROCEEDINGS OF THE 2019 13TH SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2019,
  • [37] Surface acoustic wave bandgaps in a two-dimensional composite piezoelectric phononic crystal
    Chen C.
    Tian M.
    Sun M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (08): : 247 - 254
  • [38] Tunable composite waveguide based on piezoelectric phononic crystal
    Hu, Ruixia
    Wu, Jien
    Yang, Yuzhen
    Wang, Xiaoyun
    Jia, Han
    Deng, Ke
    He, Zhaojian
    Zhao, Heping
    AIP ADVANCES, 2019, 9 (04)
  • [39] Granular Phononic Crystals as Tunable Functional Switches
    Ganesh, R.
    Gonella, S.
    Proceedings of the 2015 ICU International Congress on Ultrasonics, 2015, 70 : 807 - 810
  • [40] Tunable magneto-granular phononic crystals
    Allein, F.
    Tournat, V.
    Gusev, V. E.
    Theocharis, G.
    APPLIED PHYSICS LETTERS, 2016, 108 (16)