Prediction of Early Compressive Strength of Ultrahigh-Performance Concrete Using Machine Learning Methods

被引:13
|
作者
Zhu, Hailiang [1 ,2 ]
Wu, Xiong [3 ,4 ]
Luo, Yaoling [4 ]
Jia, Yue [1 ]
Wang, Chong [1 ]
Fang, Zheng [1 ]
Zhuang, Xiaoying [5 ,6 ]
Zhou, Shuai [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400045, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] China West Construct Acad Bldg Mat, Chengdu 610015, Peoples R China
[4] Shanghai Tunnel Engn Co Ltd, Shanghai 200082, Peoples R China
[5] Leibniz Univ Hannover, Computat Sci & Simulat Technol, Inst Photon, Fac Math & Phys, Appelstr 11A, D-30167 Hannover, Germany
[6] Tongji Univ, Dept Geotech Engn, Coll Civil Engn, 1239 Si Ping Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
UHPC; prediction; ANN; SVM; 7-day compressive strength; FIBER-REINFORCED CONCRETE; ARTIFICIAL NEURAL-NETWORKS; MECHANICAL-PROPERTIES; MESHFREE METHOD; MIX DESIGN; MODEL; AGGREGATE; HYDRATION; AGE; MICROCAPSULES;
D O I
10.1142/S0219876221410231
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a new prediction model is proposed to predict the 7-day compressive strength of ultrahigh-performance concrete (UHPC) with different mix proportions using artificial neural network (ANN) and support vector machine (SVM). The predicted results are compared with the experimental results to verify the proposed model. Then, the importance of each component and the sensitivity of parameters are investigated. The research proves that the proposed model can estimate the 7-day compressive strength of UHPC based on the mix proportions.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Prediction of the compressive strength of concrete made with soap factory wastewater using machine learning
    Mathurin, Zoyem Gouafo
    Casimir, Gouafo
    Kisito, Talla Pierre
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 5625 - 5638
  • [42] Prediction of compressive strength of high-performance concrete using optimization machine learning approaches with SHAP analysis
    Islam M.M.
    Das P.
    Rahman M.M.
    Naz F.
    Kashem A.
    Nishat M.H.
    Tabassum N.
    Journal of Building Pathology and Rehabilitation, 2024, 9 (2)
  • [43] Prediction of compressive strength of geopolymer concrete using random forest machine and deep learning
    Verma M.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2659 - 2668
  • [44] Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning
    Zhao, Yunpeng
    Goulias, Dimitrios
    Saremi, Setare
    COMPUTERS AND CONCRETE, 2023, 32 (03): : 233 - 246
  • [45] Prediction of the compressive strength of concrete made with soap factory wastewater using machine learning
    Zoyem Gouafo Mathurin
    Gouafo Casimir
    Talla Pierre Kisito
    Modeling Earth Systems and Environment, 2022, 8 : 5625 - 5638
  • [46] Influence of sand grain size distribution and supplementary cementitious materials on the compressive strength of ultrahigh-performance concrete
    Tayeh, Bassam A.
    Akeed, Mahmoud H.
    Qaidi, Shaker
    Abu Bakar, B. H.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [47] Correction: Modeling and predicting the sensitivity of high-performance concrete compressive strength using machine learning methods
    Walaa Hussein Al Yamani
    Dalin Mohammad Ghunimat
    Majdi Mowafaq Bisharah
    Asian Journal of Civil Engineering, 2023, 24 (6) : 1897 - 1897
  • [48] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Seo, Soo-Yeon
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (11) : 4664 - 4679
  • [49] Predicting the Compressive Strength and the Effective Porosity of Pervious Concrete Using Machine Learning Methods
    Ba-Anh Le
    Viet-Hung Vu
    Soo-Yeon Seo
    Bao-Viet Tran
    Tuan Nguyen-Sy
    Minh-Cuong Le
    Thai-Son Vu
    KSCE Journal of Civil Engineering, 2022, 26 : 4664 - 4679
  • [50] Super learner machine-learning algorithms for compressive strength prediction of high performance concrete
    Lee, Seunghye
    Ngoc-Hien Nguyen
    Karamanli, Armagan
    Lee, Jaehong
    Vo, Thuc P.
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2208 - 2228