Dynamic Graph-Guided Transferable Regression for Cross-Domain Speech Emotion Recognition

被引:0
|
作者
Jiang, Shenjie [1 ]
Song, Peng [1 ]
Wang, Run [1 ]
Li, Shaokai [1 ,2 ,3 ]
Zheng, Wenming [4 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] State Key Lab Tibetan Intelligent Informat Proc &, Xining 810008, Peoples R China
[3] Tibetan Informat Proc & Machine Translat Key Lab, Xining 810008, Peoples R China
[4] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
regression; transfer learning; speech emotion recognition;
D O I
10.1007/978-981-99-8565-4_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To deal with the problem of cross-domain speech emotion recognition (SER), in this paper, we propose a novel dynamic graph-guided transferable regression (DGTR) method. Specifically, a retargeted discriminant linear regression in the source domain is utilized to make the projection matrix discriminative. Meanwhile, an adaptive maximum entropy graph is designed for similarity measurement for different domains. Experiments on four popular datasets show that our method can achieve better performance compared with several related state-of-the-art methods.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [21] A Cross-Domain Transferable Neural Coherence Model
    Xu, Peng
    Saghir, Hamidreza
    Kang, Jin Sung
    Long, Teng
    Bose, Avishek Joey
    Cao, Yanshuai
    Cheung, Jackie Chi Kit
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 678 - 687
  • [22] Speech corpus recycling for acoustic cross-domain environments for automatic speech recognition
    Ichikawa, Osamu
    Rennie, Steven J.
    Fukuda, Takashi
    Willett, Daniel
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2016, 37 (02) : 55 - 65
  • [23] Dynamic Double Classifiers Approximation for Cross-Domain Recognition
    Fang, Xiaozhao
    Han, Na
    Zhou, Guoxu
    Teng, Shohua
    Xu, Yong
    Xie, Shenli
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2618 - 2629
  • [24] Deep cross-domain transfer for emotion recognition via joint learning
    Nguyen, Dung
    Nguyen, Duc Thanh
    Sridharan, Sridha
    Abdelrazek, Mohamed
    Denman, Simon
    Tran, Son N.
    Zeng, Rui
    Fookes, Clinton
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 22455 - 22472
  • [25] Region Attention Enhanced Unsupervised Cross-Domain Facial Emotion Recognition
    Ji, Yanli
    Hu, Yuhan
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4190 - 4201
  • [26] Deep cross-domain transfer for emotion recognition via joint learning
    Dung Nguyen
    Duc Thanh Nguyen
    Sridha Sridharan
    Mohamed Abdelrazek
    Simon Denman
    Son N. Tran
    Rui Zeng
    Clinton Fookes
    Multimedia Tools and Applications, 2024, 83 : 22455 - 22472
  • [27] Domain adaptive dual-relaxation regression for speech emotion recognition
    Wang, Hao
    Song, Peng
    Jiang, Shenjie
    Wang, Run
    Li, Shaokai
    Liu, Tao
    APPLIED ACOUSTICS, 2024, 224
  • [28] Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition
    Xie, Yuan
    Chen, Tianshui
    Pu, Tao
    Wu, Hefeng
    Lin, Liang
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1255 - 1264
  • [29] Exploiting Cross-Domain Visual Feature Generation for Disordered Speech Recognition
    Liu, Shansong
    Xie, Xurong
    Yu, Jianwei
    Hu, Shoukang
    Geng, Mengzhe
    Su, Rongfeng
    Zhang, Shi-Xiong
    Liu, Xunying
    Meng, Helen
    INTERSPEECH 2020, 2020, : 711 - 715
  • [30] Cross-Domain Activity Recognition
    Zheng, Vincent Wenchen
    Hu, Derek Hao
    Yang, Qiang
    UBICOMP'09: PROCEEDINGS OF THE 11TH ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING, 2009, : 61 - 70