3D Nuclei Segmentation through Deep Learning

被引:0
|
作者
Rojas, Roberto [1 ]
Navarro, Carlos F. [2 ]
Orellana, Gabriel A.
Lemus, Carmen Gloria C. [3 ]
Castaneda, Victor [1 ]
机构
[1] Univ Chile, Fac Med, Med Technol Dept, Santiago, Chile
[2] Univ Chile, Fac Med, Sci Image Anal Lab, Santiago, Chile
[3] Univ Chile, Fac Med, Lab Expt Ontogeny, Santiago, Chile
关键词
Nuclei segmentation; Light sheet fluorescence microscopy; Deep Learning; U-net;
D O I
10.1109/CAI54212.2023.00137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, deep-learning has been used successfully to solve difficult problems in fluorescence microscopy field. In this work, we propose a Drosophila 3D Nuclei segmentation based on a pipeline that detects nuclei centers and then segments each detected nucleus individually, using a different 3D U-net for detection and segmentation steps. Our method is among the top-3 performers in the Cell Tracking Challenge segmentation benchmark for Light Sheet Microscopy Drosophila dataset, reaching a final score of 0.827. The proposed methodology: i) allows the utilization of a U-net model to perform a detection task, and ii) requires much fewer training samples than direct segmentation of the entire volume, reducing the manual annotation effort.
引用
下载
收藏
页码:309 / 310
页数:2
相关论文
共 50 条
  • [11] Automatic segmentation tool for 3D digital rocks by deep learning
    Johan Phan
    Leonardo C. Ruspini
    Frank Lindseth
    Scientific Reports, 11
  • [12] Automatic segmentation tool for 3D digital rocks by deep learning
    Phan, Johan
    Ruspini, Leonardo C.
    Lindseth, Frank
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [13] 3D Detection of ALMA Sources Through Deep Learning
    Veneri, Michele Delli
    Tychoniec, Lukasz
    Guglielmetti, Fabrizia
    Villard, Eric
    Longo, Giuseppe
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 1752 : 269 - 280
  • [14] Analyzing Cell-Scaffold Interaction through Unsupervised 3D Nuclei Segmentation
    Yao, Kai
    Sun, Jie
    Huang, Kaizhu
    Jing, Linzhi
    Liu, Hang
    Huang, Dejian
    Jude, Curran
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2022, 8 (01) : 1 - 15
  • [15] Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose
    Kleinberg, Giona
    Wang, Sophia
    Comellas, Ester
    Monaghan, James R.
    Shefelbine, Sandra J.
    CELLS & DEVELOPMENT, 2022, 172
  • [16] Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation
    Martin-Abadal, Miguel
    Pinar-Molina, Manuel
    Martorell-Torres, Antoni
    Oliver-Codina, Gabriel
    Gonzalez-Cid, Yolanda
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (01) : 1 - 14
  • [17] 3D shape sensing and deep learning-based segmentation of strawberries
    Le Louëdec J.
    Cielniak G.
    Computers and Electronics in Agriculture, 2021, 190
  • [18] DeepEdit: Deep Editable Learning for Interactive Segmentation of 3D Medical Images
    Diaz-Pinto, Andres
    Mehta, Pritesh
    Alle, Sachidanand
    Asad, Muhammad
    Brown, Richard
    Nath, Vishwesh
    Ihsani, Alvin
    Antonelli, Michela
    Palkovics, Daniel
    Pinter, Csaba
    Alkalay, Ron
    Pieper, Steve
    Roth, Holger R.
    Xu, Daguang
    Dogra, Prerna
    Vercauteren, Tom
    Feng, Andrew
    Quraini, Abood
    Ourselin, Sebastien
    Cardoso, M. Jorge
    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022), 2022, 13567 : 11 - 21
  • [19] 3D Deep Learning for Anatomical Structure Segmentation in Multiple Imaging Modalities
    Villarini, Barbara
    Asaturyan, Hykoush
    Kurugol, Sila
    Afacan, Onur
    Bell, Jimmy D.
    Thomas, E. Louise
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 166 - 171
  • [20] Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning
    Hesse, Linde S.
    Aliasi, Moska
    Moser, Felipe
    Haak, Monique C.
    Xie, Weidi
    Jenkinson, Mark
    Namburete, Ana I. L.
    NEUROIMAGE, 2022, 254