Multilevel Context Feature Fusion for Semantic Segmentation of ALS Point Cloud

被引:6
|
作者
Zeng, Tao [1 ]
Luo, Fulin [2 ]
Guo, Tan [3 ]
Gong, Xiuwen [4 ]
Xue, Jingyun [1 ]
Li, Hanshan [1 ]
机构
[1] Xian Technol Univ, Sch Mechatron Engn, Xian 710054, Peoples R China
[2] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[4] Univ Sydney, Fac Engn, Camperdown, NSW 2002, Australia
基金
中国国家自然科学基金;
关键词
Attention mechanism; encoder-decoder structure; kernel point convolution (KPConv); multilevel fusion; point cloud semantic segmentation; NETWORK; CLASSIFICATION;
D O I
10.1109/LGRS.2023.3294246
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One main challenge is how to achieve effective fusion with multi-scale information. In this letter, we propose a multilevel context feature fusion network (MCFN) for semantic segmentation of ALS point cloud based on an encoder-decoder structure. More specifically, we design the squeeze-expansion shared multilayer perceptron (SE-MLP) module following kernel point convolution (KPConv) in the encoding stage, which can extend the receptive field of KPConv. To aggregate low-level features and highlevel representations, we establish channel self-attention between skip connections. In the decoding stage, we develop a crosslayer attention fusion (CAF) module to generate additional discriminative channel features by fusing multiscale features at different upsampling layers. Experiments on the ISPRS and LASDU datasets demonstrate the superiority of the proposed method. Code: https://github.com/SC-shendazt/MCFN.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Multilevel feature context semantic fusion network for cloud and cloud shadow segmentation
    Zhang, Enwei
    Hu, Kai
    Xia, Min
    Weng, Liguo
    Lin, Haifeng
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [2] Multilevel Geometric Feature Embedding in Transformer Network for ALS Point Cloud Semantic Segmentation
    Liang, Zhuanxin
    Lai, Xudong
    [J]. REMOTE SENSING, 2024, 16 (18)
  • [3] MFFNet: multimodal feature fusion network for point cloud semantic segmentation
    Ren, Dayong
    Li, Jiawei
    Wu, Zhengyi
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    [J]. VISUAL COMPUTER, 2024, 40 (08): : 5155 - 5167
  • [4] Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
    Du, Jing
    Jiang, Zuning
    Huang, Shangfeng
    Wang, Zongyue
    Su, Jinhe
    Su, Songjian
    Wu, Yundong
    Cai, Guorong
    [J]. SENSORS, 2021, 21 (05) : 1 - 20
  • [5] Point cloud semantic segmentation based on local feature fusion and multilayer attention network
    Wen, Junjie
    Ma, Jie
    Zhao, Yuehua
    Nie, Tong
    Sun, Mengxuan
    Fan, Ziming
    [J]. IET COMPUTER VISION, 2024, 18 (03) : 381 - 392
  • [6] Fast Point Voxel Convolution Neural Network with Selective Feature Fusion for Point Cloud Semantic Segmentation
    Wang, Xu
    Li, Yuyan
    Duan, Ye
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 : 319 - 330
  • [7] Active and incremental learning for semantic ALS point cloud segmentation
    Lin, Yaping
    Vosselman, George
    Cao, Yanpeng
    Yang, Michael Ying
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 169 : 73 - 92
  • [8] Improved ASPP and Multilevel Feature Semantic Fusion Segmentation Method
    Wang, Yinyu
    Meng, Fanyun
    Wang, Jinhe
    Liu, Zhihao
    [J]. Computer Engineering and Applications, 2023, 59 (13) : 220 - 228
  • [9] Multilevel feature fusion dilated convolutional network for semantic segmentation
    Ku, Tao
    Yang, Qirui
    Zhang, Hao
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (02):
  • [10] 3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation
    Ye, Xiaoqing
    Li, Jiamao
    Huang, Hexiao
    Du, Liang
    Zhang, Xiaolin
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 415 - 430