Point cloud semantic segmentation based on local feature fusion and multilayer attention network

被引:0
|
作者
Wen, Junjie [1 ]
Ma, Jie [1 ]
Zhao, Yuehua [1 ]
Nie, Tong [1 ]
Sun, Mengxuan [1 ]
Fan, Ziming [1 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin, Peoples R China
关键词
computer vision; image segmentation; pattern recognition;
D O I
10.1049/cvi2.12255
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation from a three-dimensional point cloud is vital in autonomous driving, computer vision, and augmented reality. However, current semantic segmentation does not effectively use the point cloud's local geometric features and contextual information, essential for improving segmentation accuracy. A semantic segmentation network that uses local feature fusion and a multilayer attention mechanism is proposed to address these challenges. Specifically, the authors designed a local feature fusion module to encode the geometric and feature information separately, which fully leverages the point cloud's feature perception and geometric structure representation. Furthermore, the authors designed a multilayer attention pooling module consisting of local attention pooling and cascade attention pooling to extract contextual information. Local attention pooling is used to learn local neighbourhood information, and cascade attention pooling captures contextual information from deeper local neighbourhoods. Finally, an enhanced feature representation of important information is obtained by aggregating the features from the two deep attention pooling methods. Extensive experiments on large-scale point-cloud datasets Stanford 3D large-scale indoor spaces and SemanticKITTI indicate that authors network shows excellent advantages over existing representative methods regarding local geometric feature description and global contextual relationships. The authors propose a semantic segmentation network using local feature fusion and multi-layer attention mechanism to address semantic segmentation challenges. Specifically, multi-layer attention pooling module consists of local attention pooling and cascade attention pooling to extract contextual information. Finally, the enhanced feature representation of important information can be obtained after aggregating the features from two different deep attention pooling.image
引用
收藏
页码:381 / 392
页数:12
相关论文
共 50 条
  • [1] MFFNet: multimodal feature fusion network for point cloud semantic segmentation
    Ren, Dayong
    Li, Jiawei
    Wu, Zhengyi
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    [J]. VISUAL COMPUTER, 2024, 40 (08): : 5155 - 5167
  • [2] Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
    Du, Jing
    Jiang, Zuning
    Huang, Shangfeng
    Wang, Zongyue
    Su, Jinhe
    Su, Songjian
    Wu, Yundong
    Cai, Guorong
    [J]. SENSORS, 2021, 21 (05) : 1 - 20
  • [3] Lightweight Semantic Segmentation Network based on Attention Feature Fusion
    Kuang, Xianyan
    Liu, Ping
    Chen, Yixi
    Zhang, Jianhua
    [J]. ENGINEERING LETTERS, 2023, 31 (04)
  • [4] Feature Fusion Network Based on Hybrid Attention for Semantic Segmentation
    Xie Xinchen
    Li, Chen
    Tian, Lihua
    [J]. 2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 9 - 14
  • [5] Point attention network for point cloud semantic segmentation
    Dayong REN
    Zhengyi WU
    Jiawei LI
    Piaopiao YU
    Jie GUO
    Mingqiang WEI
    Yanwen GUO
    [J]. Science China(Information Sciences), 2022, (09) : 99 - 112
  • [6] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)
  • [7] Point attention network for point cloud semantic segmentation
    Dayong Ren
    Zhengyi Wu
    Jiawei Li
    Piaopiao Yu
    Jie Guo
    Mingqiang Wei
    Yanwen Guo
    [J]. Science China Information Sciences, 2022, 65
  • [8] Local Fusion Attention Network for Semantic Segmentation of Building Facade Point Clouds
    Su, Yanfei
    Liu, Weiquan
    Cheng, Ming
    Yuan, Zhimin
    Wang, Cheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network
    Yang, Jun
    Li, Bozan
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (07): : 840 - 853
  • [10] Feature fusion network based on attention mechanism for 3D semantic segmentation of point clouds
    Zhou, Heng
    Fang, Zhijun
    Gao, Yongbin
    Huang, Bo
    Zhong, Cengsi
    Shang, Ruoxi
    [J]. PATTERN RECOGNITION LETTERS, 2020, 133 : 327 - 333