Comparative Analysis on Effect of Different SVM Kernel Functions for Classification

被引:1
|
作者
Virmani, Deepali [1 ]
Pandey, Himakshi [2 ]
机构
[1] Vivekananda Inst Profess Studies, Coll Engn, Tech Campus, New Delhi, India
[2] Bhagwan Parshuram Inst Technol, Dept Comp Sci Engn, New Delhi, India
关键词
SVM; Classification; Kernel-SVM; Types of kernels; Laplacian kernel;
D O I
10.1007/978-981-19-3679-1_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Besides linear classification, Support Vector Machine (SVM) is proficient in non-linear classification by deploying kernel tricks that implicitly maps and transform input features to high dimensional feature space. Kernel-SVM, can be utilized to secure progressively complex connections on datasets with no push to do changes all alone. In this paper, 5 different SVM kernel functions are implemented on 4 datasets, viz., IRIS, Breast Cancer Wisconsin (diagnostic), Mushroom and Letter Recognition Dataset. The five kernel functions considered in this paper are: Linear kernel, Gaussian Radial Basis Function (RBF) kernel, Laplacian kernel, Polynomial kernel and Sigmoid kernel. Our goal is to locate the best non-linear kernel. The outcomes show that the precision of expectation for Laplacian kernel is most extreme with a forecast scope of (max 100%, min 97.53%) and least for the sigmoid kernel with a forecast scope of (max 100%, min 47.28%).
引用
收藏
页码:657 / 670
页数:14
相关论文
共 50 条
  • [11] A COMPARATIVE APPROACH TO SVM KERNEL FUNCTIONS VIA ACCURATE EVALUATING ALGORITHMS
    Nurhidayat, Irfan
    Pimpunchat, Busayamas
    [J]. JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 18 (04): : 2078 - 2090
  • [12] A Comparison Study of Different Kernel Functions for SVM-based Classification of Multi-temporal Polarimetry SAR Data
    Yekkehkhany, B.
    Safari, A.
    Homayouni, S.
    Hasanlou, M.
    [J]. 1ST ISPRS INTERNATIONAL CONFERENCE ON GEOSPATIAL INFORMATION RESEARCH, 2014, 40 (2/W3): : 281 - 285
  • [13] Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index
    Pande, Chaitanya B.
    Kushwaha, N. L.
    Orimoloye, Israel R.
    Kumar, Rohitashw
    Abdo, Hazem Ghassan
    Tolche, Abebe Debele
    Elbeltagi, Ahmed
    [J]. WATER RESOURCES MANAGEMENT, 2023, 37 (03) : 1367 - 1399
  • [14] Comparative Assessment of Improved SVM Method under Different Kernel Functions for Predicting Multi-scale Drought Index
    Chaitanya B. Pande
    N. L. Kushwaha
    Israel R. Orimoloye
    Rohitashw Kumar
    Hazem Ghassan Abdo
    Abebe Debele Tolche
    Ahmed Elbeltagi
    [J]. Water Resources Management, 2023, 37 : 1367 - 1399
  • [15] A comparative performance analysis of different activation functions in LSTM networks for classification
    Farzad, Amir
    Mashayekhi, Hoda
    Hassanpour, Hamid
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 2507 - 2521
  • [16] A comparative performance analysis of different activation functions in LSTM networks for classification
    Amir Farzad
    Hoda Mashayekhi
    Hamid Hassanpour
    [J]. Neural Computing and Applications, 2019, 31 : 2507 - 2521
  • [17] Kernel functions in convolution surfaces: a comparative analysis
    Andrei Sherstyuk
    [J]. The Visual Computer, 1999, 15 : 171 - 182
  • [18] Kernel functions in convolution surfaces: a comparative analysis
    Sherstyuk, A
    [J]. VISUAL COMPUTER, 1999, 15 (04): : 171 - 182
  • [19] Opinion classification with tree kernel SVM using linguistic modality analysis
    Science and Technical Research Labs., NHK , Japan
    不详
    不详
    不详
    [J]. Int Conf Inf Knowledge Manage, (1791-1794):
  • [20] Text Classification Using SVM with Exponential Kernel
    Chen, Junting
    Zhong, Jian
    Xie, Yicai
    Cai, Caiyun
    [J]. COMPUTER AND INFORMATION TECHNOLOGY, 2014, 519-520 : 807 - +