Rationalizing Graph Neural Networks with Data Augmentation

被引:0
|
作者
Liu, Gang [1 ]
Inae, Eric [1 ]
Luo, Tengfei [1 ]
Jiang, Meng [1 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
Graph neural network; node classification; graph property prediction; data augmentation; rationalization;
D O I
10.1145/3638781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph rationales are representative subgraph structures that best explain and support the graph neural network (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on both levels, little attention has been given to GNN rationalization and the lack of training examples makes it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a unified data augmentation framework with two novel operations on environment subgraphs to rationalize GNN prediction. We define the environment subgraph as the remaining subgraph after rationale identification and separation. The framework efficiently performs rationale-environment separation in the representation space for a node's neighborhood graph or a graph's complete structure to avoid the high complexity of explicit graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph classification, and graph regression. Results demonstrate that our framework is effective and efficient in rationalizing and enhancing GNNs for different levels of tasks on graphs.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] SCALABLE MISSING DATA IMPUTATION WITH GRAPH NEURAL NETWORKS
    Lachaud, Guillaume
    Conde-Cespedes, Patricia
    Trocan, Maria
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [42] A review of Graph Neural Networks for Electroencephalography data analysis
    Grana, Manuel
    Morais-Quilez, Igone
    NEUROCOMPUTING, 2023, 562
  • [43] Data Augmented Graph Neural Networks for Personality Detection
    Zhu, Yangfu
    Xia, Yue
    Li, Meiling
    Zhang, Tingting
    Wu, Bin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 664 - 672
  • [44] Graph Neural Networks for IoT Data Aggregation Scheduling
    Vo, Van-Vi
    Raza, Syed M.
    Duc-Tai Le
    Kim, Moonseong
    Choo, Hyunseung
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [45] Benchmarking Graph Neural Networks for Internet Routing Data
    Giakatos, Dimitrios P.
    Kostoglou, Sofia
    Sermpezis, Pavlos
    Vakali, Athena
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON GRAPH NEURAL NETWORKING, GNNET 2022, 2022, : 1 - 6
  • [46] Spatial Data Augmentation: Improving the Generalization of Neural Networks for Pansharpening
    Chen, Lihui
    Vivone, Gemine
    Nie, Zihao
    Chanussot, Jocelyn
    Yang, Xiaomin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Data augmentation for univariate time series forecasting with neural networks
    Semenoglou, Artemios-Anargyros
    Spiliotis, Evangelos
    Assimakopoulos, Vassilios
    PATTERN RECOGNITION, 2022, 134
  • [48] SanitAIs: Unsupervised Data Augmentation to Sanitize Trojaned Neural Networks
    Karra, Kiran
    Ashcraft, Chace
    Costello, Cash
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 300 - 305
  • [49] A survey on face data augmentation for the training of deep neural networks
    Wang, Xiang
    Wang, Kai
    Lian, Shiguo
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19): : 15503 - 15531
  • [50] Biomedical Data Augmentation Using Generative Adversarial Neural Networks
    Calimeri, Francesco
    Marzullo, Aldo
    Stamile, Claudio
    Terracina, Giorgio
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 626 - 634