Distributed Continual Learning With CoCoA in High-Dimensional Linear Regression

被引:0
|
作者
Hellkvist, Martin [1 ]
Ozcelikkale, Ayca [1 ]
Ahlen, Anders [1 ]
机构
[1] Uppsala Univ, Dept Elect Engn, S-75121 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Task analysis; Training; Distributed databases; Distance learning; Computer aided instruction; Data models; Training data; Multi-task networks; networked systems; distributed estimation; adaptation; overparametrization; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1109/TSP.2024.3361714
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider estimation under scenarios where the signals of interest exhibit change of characteristics over time. In particular, we consider the continual learning problem where different tasks, e.g., data with different distributions, arrive sequentially and the aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks. In contrast to the continual learning literature focusing on the centralized setting, we investigate the problem from a distributed estimation perspective. We consider the well-established distributed learning algorithm CoCoA, which distributes the model parameters and the corresponding features over the network. We provide exact analytical characterization for the generalization error of CoCoA under continual learning for linear regression in a range of scenarios, where overparameterization is of particular interest. These analytical results characterize how the generalization error depends on the network structure, the task similarity and the number of tasks, and show how these dependencies are intertwined. In particular, our results show that the generalization error can be significantly reduced by adjusting the network size, where the most favorable network size depends on task similarity and the number of tasks. We present numerical results verifying the theoretical analysis and illustrate the continual learning performance of CoCoA with a digit classification task.
引用
收藏
页码:1015 / 1031
页数:17
相关论文
共 50 条
  • [41] MODEL SELECTION FOR HIGH-DIMENSIONAL LINEAR REGRESSION WITH DEPENDENT OBSERVATIONS
    Ing, Ching-Kang
    ANNALS OF STATISTICS, 2020, 48 (04): : 1959 - 1980
  • [42] Distributed dictionary learning for high-dimensional process monitoring
    Huang, Keke
    Wu, Yiming
    Wen, Haofei
    Liu, Yishun
    Yang, Chunhua
    Gui, Weihua
    CONTROL ENGINEERING PRACTICE, 2020, 98
  • [43] Variable screening in multivariate linear regression with high-dimensional covariates
    Bizuayehu, Shiferaw B.
    Li, Lu
    Xu, Jin
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (03) : 241 - 253
  • [44] HIGH-DIMENSIONAL LINEAR REGRESSION FOR DEPENDENT DATA WITH APPLICATIONS TO NOWCASTING
    Han, Yuefeng
    Tsay, Ruey S.
    STATISTICA SINICA, 2020, 30 (04) : 1797 - 1827
  • [45] Variational Bayes for High-Dimensional Linear Regression With Sparse Priors
    Ray, Kolyan
    Szabo, Botond
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1270 - 1281
  • [46] Shrinkage Ridge Regression Estimators in High-Dimensional Linear Models
    Yuzbasi, Bahadir
    Ahmed, S. Ejaz
    PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2015, 362 : 793 - 807
  • [47] Empirical Priors for Prediction in Sparse High-dimensional Linear Regression
    Martin, Ryan
    Tang, Yiqi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [48] The sparsity and bias of the lasso selection in high-dimensional linear regression
    Zhang, Cun-Hui
    Huang, Jian
    ANNALS OF STATISTICS, 2008, 36 (04): : 1567 - 1594
  • [49] The likelihood ratio test for high-dimensional linear regression model
    Xie, Junshan
    Xiao, Nannan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8479 - 8492
  • [50] Empirical priors for prediction in sparse high-dimensional linear regression
    Martin, Ryan
    Tang, Yiqi
    Journal of Machine Learning Research, 2020, 21