Inverting mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation

被引:0
|
作者
Cheng, Jin [2 ]
Yang, Zhiwei [1 ]
Zheng, Xiangcheng [3 ]
机构
[1] Fudan Univ, Sch Math Sci, Res Inst Intelligent Complex Syst, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Euler-Bernoulli beam; viscoelastic foundation; finite element scheme; inverse problem; DIFFERENTIAL-EQUATIONS; FRACTIONAL CALCULUS; POWER-LAW; MODELS;
D O I
10.1515/jiip-2023-0084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an inverse problem of determining the mechanical and variable-order parameters of the Euler-Bernoulli beam on viscoelastic foundation. For this goal, we develop a fully-discrete Hermite finite element scheme for this model and analyze the corresponding error estimates. The Levenberg-Marquardt method is then applied to determine the multiple parameters. Extensive numerical experiments are performed under practical settings to demonstrate the behavior of the proposed model and the efficiency of the algorithm.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 50 条
  • [31] Periodic Solutions for a Class of Semilinear Euler-Bernoulli Beam Equations with Variable Coefficients
    Wei, Hui
    Ji, Shuguan
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025, 37 (01) : 237 - 249
  • [32] Dynamics of vehicle-pavement system based on a viscoelastic Euler-Bernoulli beam model
    Snehasagar, G.
    Krishnanunni, C. G.
    Rao, B. N.
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2020, 21 (13) : 1669 - 1682
  • [33] Analytical solutions for steady state responses of an infinite Euler-Bernoulli beam on a nonlinear viscoelastic foundation subjected to a harmonic moving load
    Zhen, Bin
    Xu, Jian
    Sun, Jianqiao
    JOURNAL OF SOUND AND VIBRATION, 2020, 476
  • [34] Motion Planning for a Damped Euler-Bernoulli Beam
    Meurer, Thomas
    Schroeck, Johannes
    Kugi, Andreas
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2566 - 2571
  • [35] Free vibrations of a complex Euler-Bernoulli beam
    Popplewell, N
    Chang, DQ
    JOURNAL OF SOUND AND VIBRATION, 1996, 190 (05) : 852 - 856
  • [36] Vibration control of a rotating Euler-Bernoulli beam
    Diken, H
    JOURNAL OF SOUND AND VIBRATION, 2000, 232 (03) : 541 - 551
  • [37] Optimal vibration quenching for an Euler-Bernoulli beam
    Sloss, JM
    Bruch, JC
    Kao, CC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (02) : 306 - 331
  • [38] Solvability of the clamped Euler-Bernoulli beam equation
    Baysal, Onur
    Hasanov, Alemdar
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 85 - 90
  • [39] Matching Boundary Conditions for the Euler-Bernoulli Beam
    Feng, Yaoqi
    Wang, Xianming
    SHOCK AND VIBRATION, 2021, 2021
  • [40] Interaction between a moving oscillator with dry friction and an infinite euler-bernoulli beam on viscoelastic foundation – green’s function method
    Mazilu, Traian
    Dinu, Vlăduț-Marian
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2021, 83 (02): : 73 - 82