Numerical Simulation on Shale Fragmentation by a PDC Cutter Based on the Discrete Element Method

被引:1
|
作者
Zhang, Xiaohui [1 ,2 ,3 ]
Huang, Xiaolin [4 ]
Qi, Shengwen [1 ,2 ,3 ]
Zheng, Bowen [1 ,2 ,3 ]
Guo, Songfeng [1 ,2 ,3 ]
Lu, Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Dept Civil Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
shale; PDC; cutting; rock breaking; discrete element method; ROCK-BREAKING MECHANISM; CUTTING FORCE; MODEL; INDENTATION; FAILURE; OPTIMIZATION; EFFICIENCY; FRICTION; ENERGY; TESTS;
D O I
10.3390/en16020965
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
During the guided drilling process as part of shale gas exploration and development, shale is damaged by a polycrystalline diamond compact (PDC) bit cutter. It is essential to carry out research on rock breaking by a PDC cutter. In this paper, we study the mechanism of shale fragmentation by a PDC cutter based on the discrete element method. Additionally, we consider the effects of bedding angle, bedding thickness, cutting depth and cutting rate on the rock-breaking efficiency of a PDC cutter. The results show the following: (1) With the increase in bedding angle, the number and area of microcracks first increase and then decrease, and the proportion of tension cracks is relatively unchanged; there is no significant change in the morphology of the failure zone, and the average particle size of the cutting fragments first decreases and then increases. (2) With the increase in the bedding thickness, microcracks continue to extend in a horizontal direction, the total number of cracks shows a fluctuated change, and the proportion of tension cracks increases. The failure zone extends in a conical shape in the horizontal direction, and the average size of the cutting fragments gradually increases. (3) With the increase in cutting depth and cutting rate, the number and area of microcracks increase, and the proportion of shear cracks increases; the area of the failure zone increases and the size of the cutting fragment decreases.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method
    Deng, Shouchun
    Li, Haibo
    Ma, Guowei
    Huang, Hai
    Li, Xu
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 70 : 219 - 228
  • [22] Numerical simulation of cone penetration test by discrete element method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    Yantu Gongcheng Xuebao, 11 (1604-1610):
  • [23] Numerical simulation of rock cutting using the discrete element method
    Su, Okan
    Akcin, Nuri Ali
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2011, 48 (03) : 434 - 442
  • [24] Numerical simulation of granular materials by an improved discrete element method
    Fortin, J
    Millet, O
    de Saxcé, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (05) : 639 - 663
  • [25] Numerical simulation of the embedded discrete fractures by the finite element method
    Nikiforov, D. Y.
    Stepanov, S. P.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158
  • [26] Numerical simulation of particle consolidation under compression and shear based on the Discrete Element method
    Qian, Yunzhou
    Usher, Shane P.
    Scales, Peter J.
    Stickland, Anthony D.
    Alexiadis, Alessio
    ADVANCED POWDER TECHNOLOGY, 2024, 35 (12)
  • [27] Numerical simulation of punching processes by particle flow code based on discrete element method
    Zhejiang Provincial Plan Design and Research Institute of Communications, Hangzhou 310006, China
    不详
    不详
    不详
    Yanshilixue Yu Gongcheng Xuebao, 2007, SUPPL. 1 (3058-3064):
  • [28] Numerical Simulation of Particle Flow for High Velocity Compaction Based on Discrete Element Method
    Zheng Zhoushun
    Wang Shuang
    Zheng Shan
    Qu Xuanhui
    RARE METAL MATERIALS AND ENGINEERING, 2010, 39 (12) : 2132 - 2136
  • [29] Numerical simulation model for granulation kinetics of iron ores based on discrete element method
    Kano, Junya
    Kasai, Eiki
    Saito, Fumio
    Kawaguchi, Takazo
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2006, 92 (12): : 742 - 747
  • [30] Numerical Simulation of Particle Flow for High Velocity Compaction Based on Discrete Element Method
    Wang Shuang
    Zheng Zhoushun
    Zheng Shan
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 378 - 383