Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics

被引:38
|
作者
Cheng, Chong-Dong [1 ]
Tian, Bo [1 ]
Shen, Yuan [1 ]
Zhou, Tian-Yu [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Hirota method; Pfaffian technique; Soliton solutions; Breather solutions; SOLITON-SOLUTIONS; RATIONAL SOLUTIONS; BACKLUND TRANSFORMATION; EQUATION;
D O I
10.1007/s11071-022-08189-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics is investigated. Bilinear form under certain coefficient constraints is given via the Hirota method. The Nth-order Pfaffian solutions are proved by means of the Pfaffian technique, where N is a positive integer. N-soliton and the higher-order breather solutions are exported through the Nth-order Pfaffian solutions. Different two-soliton/breather structures and their dynamics are derived. Elastic/inelastic interactions between the two solitons/breathers are investigated. Graphical representations of the influence of the coefficients in the equation on the velocities and amplitudes of the solitons and breathers are exhibited.
引用
收藏
页码:6659 / 6675
页数:17
相关论文
共 50 条
  • [31] Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in fluid mechanics and plasma physics
    Liu, Fei-Yan
    Gao, Yi-Tian
    Yu, Xin
    Li, Liu-Qing
    Ding, Cui-Cui
    Wang, Dong
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (06):
  • [32] Numerical Soliton Solutions of Fractional Modified (2+1)-Dimensional Konopelchenko-Dubrovsky Equations in Plasma Physics
    Ray, S. Saha
    Sagar, B.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (01):
  • [33] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [34] Exact Solutions to (2+1)-Dimensional Kaup Kupershmidt Equation
    Lue Hai-Ling
    Liu Xi-Qiang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (05) : 795 - 800
  • [35] Higher-order mixed localized wave solutions and bilinear auto-Bäcklund transformations for the (3+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation
    Peng-Fei Han
    Taogetusang Bao
    The European Physical Journal Plus, 137
  • [36] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    A. Hussain
    T. Parveen
    B. A. Younis
    Huda U. M. Ahamd
    T. F. Ibrahim
    Mohammed Sallah
    Scientific Reports, 14
  • [37] Generalized method and new exact wave solutions for (2+1)-dimensional Broer-Kaup-Kupershmidt system
    Wan, Ying
    Song, Lina
    Yin, Li
    Zhang, Hongqing
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 644 - 657
  • [38] Soliton Solutions, Backlund Transformation and Wronskian Solutions for the (2+1)-Dimensional Variable-Coefficient Konopelchenko-Dubrovsky Equations in Fluid Mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Wang, Lei
    Meng, De-Xin
    Gai, Xiao-Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 132 - 140
  • [39] Multiple lump solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Ma, Hongcai
    Bai, Yunxiang
    Deng, Aiping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7135 - 7142
  • [40] Dynamical and physical characteristics of soliton solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky system
    Alruwaili, Abdulmohsen D.
    Seadawy, Aly R.
    Ali, Asghar
    Aldandani, Mohammed M.
    OPEN PHYSICS, 2023, 21 (01):