On Hopf algebraic structures of quantum toroidal algebras

被引:3
|
作者
Jing, Naihuan [1 ]
Zhang, Honglian [2 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC USA
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
美国国家科学基金会;
关键词
Drinfeld realization; comultiplication; Drinfeld generator; Hopf algebra; quantum toroidal algebra; DRINFELD REALIZATION; VERTEX OPERATORS; REPRESENTATIONS; COPRODUCT; YANGIANS;
D O I
10.1080/00927872.2022.2127604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an algebra u(0) using a simplified set of generators for the quantum toroidal algebra U-q(sl(n+1),tor) and show that there exists an epimorphism from u(0) to U-q(sl(n+1),tor). We derive a closed formula of the comultiplication on the generators of u(0) that extends that of the quantum affine algebra U-q((sl) over cap (n+1)). As a consequence, we show that u(0) is a Hopf algebra for n = 1, 2 and give conjectural formulas in the general case. We further show that u(0) is isomorphic to a double algebra.
引用
收藏
页码:1135 / 1157
页数:23
相关论文
共 50 条
  • [1] ALGEBRAIC GROUPS AND HOPF ALGEBRAS
    HOCHSCHILD, G
    ILLINOIS JOURNAL OF MATHEMATICS, 1970, 14 (01) : 52 - +
  • [2] Quantum toroidal algebras and solvable structures in gauge/string theory
    Matsuo, Yutaka
    Nawata, Satoshi
    Noshita, Go
    Zhu, Rui-Dong
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1055 : 1 - 144
  • [3] Quantum toroidal algebras and their representations
    David Hernandez
    Selecta Mathematica, 2009, 14 : 701 - 725
  • [4] Quantum toroidal and shuffle algebras
    Negut, Andrei
    ADVANCES IN MATHEMATICS, 2020, 372
  • [5] Quantum toroidal algebras and their representations
    Hernandez, David
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 701 - 725
  • [6] QUANTUM ALGEBRAS .1. BASIC ALGEBRAIC AND TOPOLOGICAL STRUCTURES
    SALLER, H
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (06): : 603 - 630
  • [7] Quantum symmetric algebras as braided hopf algebras
    de Chela, DF
    Algebraic Structures and Their Representations, 2005, 376 : 261 - 271
  • [9] Deformations of W algebras via quantum toroidal algebras
    Feigin, B.
    Jimbo, M.
    Mukhin, E.
    Vilkoviskiy, I
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [10] REDUCED QUIVER QUANTUM TOROIDAL ALGEBRAS
    Negut, Andrei
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2025, 24 (02) : 341 - 369