Modular forms of half-integral weight on exceptional groups

被引:0
|
作者
Leslie, Spencer [1 ]
Pollack, Aaron [2 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
automorphic minimal representation; quaternionic modular forms; half-integral weight modular forms; covering groups; REPRESENTATIONS; EXTENSIONS; SERIES; COVERS; K2;
D O I
10.1112/S0010437X23007686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by ${\pm }1$. We analyze the minimal modular form $\Theta _{F_4}$ on the double cover of $F_4$, following Loke-Savin and Ginzburg. Using $\Theta _{F_4}$, we define a modular form of weight $\tfrac {1}{2}$ on (the double cover of) $G_2$. We prove that the Fourier coefficients of this modular form on $G_2$ see the $2$-torsion in the narrow class groups of totally real cubic fields.
引用
收藏
页码:657 / 707
页数:52
相关论文
共 50 条
  • [21] A note on the Fourier coefficients of half-integral weight modular forms
    Kumar, Narasimha
    Purkait, Soma
    ARCHIV DER MATHEMATIK, 2014, 102 (04) : 369 - 378
  • [22] Congruences for Γ1(4)-modular forms of half-integral weight
    Tupan, Alexandru
    RAMANUJAN JOURNAL, 2006, 11 (02): : 165 - 173
  • [23] On the algebraicity of coefficients of half-integral weight mock modular forms
    Choi, SoYoung
    Kim, Chang Heon
    OPEN MATHEMATICS, 2018, 16 : 1335 - 1343
  • [24] ON REPRESENTATIONS OF FINITE-GROUPS IN THE SPACE OF MODULAR-FORMS OF HALF-INTEGRAL WEIGHT
    UEDA, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (06) : 198 - 203
  • [25] Equidistribution of signs for Hilbert modular forms of half-integral weight
    Kaushik S.
    Kumar N.
    Tanabe N.
    Research in Number Theory, 2018, 4 (2)
  • [26] SIGN OF FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF-INTEGRAL WEIGHT
    Lau, Yuk-Kam
    Royer, Emmanuel
    Wu, Jie
    MATHEMATIKA, 2016, 62 (03) : 866 - 883
  • [27] Lifting modular forms of half-integral weight to Siegel modular forms of even genus
    Winfried Kohnen
    Mathematische Annalen, 2002, 322 : 787 - 809
  • [28] Effective construction of Hilbert modular forms of half-integral weight
    Nicolás Sirolli
    Gonzalo Tornaría
    Mathematische Zeitschrift, 2022, 302 : 2513 - 2543
  • [29] Coefficients of half-integral weight modular forms modulo ℓj
    Scott Ahlgren
    Matthew Boylan
    Mathematische Annalen, 2005, 331 : 219 - 239
  • [30] Congruences for Γ1(4)-modular forms of half-integral weight
    Alexandru Tupan
    The Ramanujan Journal, 2006, 11 : 165 - 173