Integrating image processing and deep learning for effective analysis and classification of dust pollution in mining processes

被引:15
|
作者
Yin, Jiangjiang [1 ]
Lei, Jiangyang [1 ]
Fan, Kaixin [1 ]
Wang, Shaofeng [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dust pollution; Hazard analysis; Grayscale average; Fractal dimension; Deep learning; COAL-MINE; DIFFUSION; FACE;
D O I
10.1007/s40789-023-00653-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A comprehensive evaluation method is proposed to analyze dust pollution generated in the production process of mines. The method employs an optimized image-processing and deep learning framework to characterize the gray and fractal features in dust images. The research reveals both linear and logarithmic correlations between the gray features, fractal dimension, and dust mass, while employing Chauvenel criteria and arithmetic averaging to minimize data discreteness. An integrated hazardous index is developed, including a logarithmic correlation between the index and dust mass, and a four-category dataset is subsequently prepared for the deep learning framework. Based on the range of the hazardous index, the dust images are divided into four categories. Subsequently, a dust risk classification system is established using the deep learning model, which exhibits a high degree of performance after the training process. Notably, the model achieves a testing accuracy of 95.3%, indicating its effectiveness in classifying different levels of dust pollution, and the precision, recall, and F1-score of the system confirm its reliability in analyzing dust pollution. Overall, the proposed method provides a reliable and efficient way to monitor and analyze dust pollution in mines.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Human skin type classification using image processing and deep learning approaches
    Saiwaeo, Sirawit
    Arwatchananukul, Sujitra
    Mungmai, Lapatrada
    Preedalikit, Weeraya
    Aunsri, Nattapol
    HELIYON, 2023, 9 (11)
  • [22] Facial Image Pre-Processing and Emotion Classification: A Deep Learning Approach
    Navaz, Alramzana Nujum
    Adel, Serhani Mohamed
    Mathew, Sujith Samuel
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,
  • [23] Deep Learning for Pulmonary Image Analysis: Classification, Detection, and Segmentation
    Kido, Shoji
    Hirano, Yasushi
    Mabu, Shingo
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 47 - 58
  • [24] Image surface texture analysis and classification using deep learning
    Aggarwal, Akarsh
    Kumar, Manoj
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (01) : 1289 - 1309
  • [25] EXPLAINABLE ANALYSIS OF DEEP LEARNING METHODS FOR SAR IMAGE CLASSIFICATION
    Su, Shenghan
    Cui, Ziteng
    Guo, Weiwei
    Zhang, Zenghui
    Yu, Wenxian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2570 - 2573
  • [26] Image surface texture analysis and classification using deep learning
    Akarsh Aggarwal
    Manoj Kumar
    Multimedia Tools and Applications, 2021, 80 : 1289 - 1309
  • [27] Deep Learning Analysis for Big Remote Sensing Image Classification
    Chebbi, Imen
    Mellouli, Nedra
    Lamolle, Myriam
    Farah, Imed
    KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 355 - 362
  • [28] Statistical Loss and Analysis for Deep Learning in Hyperspectral Image Classification
    Gong, Zhiqiang
    Zhong, Ping
    Hu, Weidong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 322 - 333
  • [29] Genome analysis through image processing with deep learning models
    Zhang, Yao-zhong
    Imoto, Seiya
    JOURNAL OF HUMAN GENETICS, 2024, 69 (10) : 519 - 525
  • [30] Deep Learning Approaches to Image Texture Analysis in Material Processing
    Liu, Xiu
    Aldrich, Chris
    METALS, 2022, 12 (02)