Droplet boiling on micro-pillar array surface - Nucleate boiling regime

被引:2
|
作者
Wang, Tianjiao [1 ]
Mu, Xingsen [1 ]
Shen, Shengqiang [1 ]
Liang, Gangtao [1 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
关键词
Droplet boiling; Nucleate boiling; Bubble behavior; Micro-pillar array; LATTICE BOLTZMANN SIMULATION; HEAT-TRANSFER; PHASE-TRANSITIONS; IMPACT; MODEL; SUPPRESSION; NANOFLUID; DEPARTURE; GROWTH; FLOW;
D O I
10.1016/j.ces.2023.119203
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Despite spray cooling in the form of droplet boiling on a textured surface being a very promising phase-change heat dissipating method, the understanding of droplet/bubble two-phase dynamics in the nucleate boiling is extraordinarily limited. In this study, we report sessile droplet boiling on micropillar array surface in the nucleate boiling regime using a three-dimensional lattice Boltzmann model comprehensively. Effects of micro-pillar size on bubble behaviors inside droplet are discussed in detail, covering bubble nucleation, growth, coalescence, and rupture. For the micro-pillars with large side length or small spacing, nucleation sites are activated around micro-pillar top surface. The preferential activation location of nucleation sites is determined by temperature, confined space and fluid flow. In bubble growth stage, the variation of bubble radius with time follows the square root law, being consistent with previous experiments. Bubbles merge into a large central bubble beneath droplet for the short micro-pillars while into a vapor layer for the long micro-pillars. Emergence of large central bubble prolongs droplet lifetime but deteriorates heat transfer. In addition, increasing micro-pillar side length or decreasing micro-pillar height can delay activation of nucleation sites.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] Surface Nanobubbles Nucleate Liquid Boiling
    Zou, Jintao
    Zhang, Hongguang
    Guo, Zhenjiang
    Liu, Yawei
    Wei, Jiachen
    Huang, Yan
    Zhang, Xianren
    LANGMUIR, 2018, 34 (46) : 14096 - 14101
  • [22] EFFECT OF SURFACE ROUGHNESS ON NUCLEATE BOILING
    KULOOR, NR
    RADHAKRI.VN
    CHEMICAL AND PROCESS ENGINEERING, 1966, 47 (06): : 276 - +
  • [23] NUMERICAL MODELING OF A NUCLEATE BOILING SURFACE
    PASAMEHMETOGLU, KO
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1994, 25 (06) : 703 - 719
  • [24] Configuration of micro-layer in nucleate boiling
    Utaka, Yoshio
    Nakamura, Kosaku
    Sakurai, Akinori
    Itagaki, Kunitoshi
    Sonoda, Hideyuki
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2008, 74 (11): : 2358 - 2364
  • [25] Simulation on nucleate boiling in micro-channel
    Zhuan, Rui
    Wang, Wen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (1-3) : 502 - 512
  • [26] Methodology to compute spray cooling in the nucleate boiling regime
    Banerjee, Nilojendu
    Tropea, Cameron
    Seshadri, Satyanarayanan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 225
  • [27] Experimental studies of droplet nucleate boiling characteristics on micro-cavities surfaces with different wettability
    Gao, Linsong
    Bai, Minli
    Lv, Jizu
    Li, Yang
    Yang, Yunjie
    Lv, Xuecheng
    Liu, Xuanyu
    Li, Yubai
    APPLIED THERMAL ENGINEERING, 2023, 228
  • [28] Numerical simulation of oblique impact of a droplet on a surface in the film boiling regime
    Pournaderi, P.
    Pishevar, A. R.
    SCIENTIA IRANICA, 2014, 21 (01) : 119 - 129
  • [29] Active effect of super-hydrophobicity on droplet nucleate boiling
    Zou, Lei
    Wang, Hong
    Zhu, Xun
    Ding, Yudong
    Liao, Qiang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 157
  • [30] The effect of surfactant concentrations and surface material on heat transfer coefficient in nucleate boiling regime
    Refaey, A. M.
    Elnaggar, S.
    Abdel-Latif, S. H.
    Hamza, A.
    KERNTECHNIK, 2021, 86 (05) : 365 - 374