Numerical Optimization of Battery Heat Management of Electric Vehicles

被引:5
|
作者
Szurke, Szabolcs Kocsis [1 ]
Kovacs, Gabor [1 ]
Sysyn, Mykola [2 ]
Liu, Jianxing [3 ]
Fischer, Szabolcs [1 ]
机构
[1] Szechenyi Istvan Univ, Cent Campus Gyor, H-9026 Gyor, Hungary
[2] Tech Univ Dresden, Inst Railway Syst & Publ Transport, Dept Planning & Design Railway Infrastructure, D-01069 Dresden, Germany
[3] Southwest Jiaotong Univ, Sch Civil Engn, Chengdu 610031, Peoples R China
来源
关键词
Lithium-ion battery; thermal management; CFD simulation; battery test; thermal modeling; THERMAL MANAGEMENT; ION BATTERIES;
D O I
10.22055/jacm.2023.43703.4119
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lithium-ion battery technology in the modern automotive industry utilizes highly temperature-sensitive batteries. Here, air cooling strategies will be the most applicable for the chosen example based on strategies for temperature control. Simulations have been utilized to evaluate the different thermal management strategies. A battery model was developed using the solutions offered by Computational Fluid Dynamics (CFD) simulation technology. It utilizes the heat produced by the discharge of the battery cells. Due to the simulation's limited computational capacity, the energy transfer model was implemented with a simplified but sufficiently complex physical mesh. Ten actual measurements were conducted in the laboratory to investigate the heating of the cell during the charging and discharging of 18650-type batteries. The results were applied to validate the simulation model. The simulation outcomes and thermal camera readings were compared. The cell-level numerical model was then extended to examine the temperature variation at the system level. The primary design objective is to achieve the highest energy density possible, which necessitates that the cells be constructed as closely as possible; however, increasing the distance between the cells can provide superior cooling from a thermal management perspective. The effect of varying the distance between individual cells on the system's heating was analyzed. Greater distance resulted in a more efficient heat transfer. It was also discovered that, in some instances, a small distance between cells produces inferior results compared to when constructed adjacently. A critical distance range has been established based on these simulations, which facilitates the placement of the cells.
引用
收藏
页码:1076 / 1092
页数:17
相关论文
共 50 条
  • [41] Learning policies for battery usage optimization in electric vehicles
    Ermon, Stefano
    Xue, Yexiang
    Gomes, Carla
    Selman, Bart
    MACHINE LEARNING, 2013, 92 (01) : 177 - 194
  • [42] Battery Operation Cycle Management for Electric Vehicles with Battery Switching Technology
    Doukas, Georgios
    Bauer, Pavol
    van der Burgt, Jos
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2014,
  • [43] Advances in battery state estimation of battery management system in electric vehicles
    Jiang, Ming
    Li, Dongjiang
    Li, Zonghua
    Chen, Zhuo
    Yan, Qinshan
    Lin, Fu
    Yu, Cheng
    Jiang, Bo
    Wei, Xuezhe
    Yan, Wensheng
    Yang, Yong
    JOURNAL OF POWER SOURCES, 2024, 612
  • [44] Numerical study of a hybrid battery thermal management system for enhanced thermal regulation in electric vehicles
    Yogeshwar, Dasari
    Repaka, Ramjee
    Nadda, Rahul
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [45] Connecting battery technologies for electric vehicles from battery materials to management
    Zhao, Gang
    Wang, Xiaolin
    Negnevitsky, Michael
    ISCIENCE, 2022, 25 (02)
  • [46] Battery Operation Cycle Management for Electric Vehicles with Battery Switching Technology
    Doukas, Georgios
    Bauer, Pavol
    van der Burgt, Jos
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2014,
  • [47] Design of Thermal Management Systems for Battery Electric Vehicles
    Reiter, Christoph
    Wassiliadis, Nikolaos
    Lienkamp, Markus
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [48] Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles
    Javani, N.
    Dincer, I.
    Naterer, G. F.
    Yilbas, B. S.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 72 : 690 - 703
  • [49] Advancements and challenges in battery thermal management for electric vehicles
    Manisha
    Tiwari, Sumit
    Sahdev, Ravinder Kumar
    Chhabra, Deepak
    Kumari, Meena
    Ali, Arshad
    Sehrawat, Ravin
    Tiwari, Prabhakar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 209
  • [50] Charge Planning and Thermal Management of Battery Electric Vehicles
    Hamednia, Ahad
    Hanson, Victor
    Zhao, Jiaming
    Murgovski, Nikolce
    Forsman, Jimmy
    Pourabdollah, Mitra
    Larsson, Viktor
    Fredriksson, Jonas
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14141 - 14154