Zonal labelings and Tait colorings from a new perspective

被引:0
|
作者
Bowling, Andrew [1 ]
Xie, Weiguo [1 ]
机构
[1] Univ Minnesota Duluth, Swenson Coll Sci & Engn, Duluth, MN 55812 USA
关键词
Four color problem; Tait coloring; Plane graphs; Zonal labeling; Plane triangulation;
D O I
10.1007/s00010-024-01037-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V(G),E(G),F(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V(G), E(G), F(G))$$\end{document} be a plane graph with vertex, edge, and region sets V(G), E(G), and F(G) respectively. A zonal labeling of a plane graph G is a labeling l:V(G)->{1,2}subset of Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell : V(G)\rightarrow \{1,2\}\subset \mathbb {Z}_3$$\end{document} such that for every region R is an element of F(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\in F(G)$$\end{document} with boundary BR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_R$$\end{document}, n-ary sumation v is an element of V(BR)l(v)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{v\in V(B_R)}\ell (v)=0$$\end{document} in Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_3$$\end{document}. It has been proven by Chartrand, Egan, and Zhang that a cubic map has a zonal labeling if and only if it has a 3-edge coloring, also known as a Tait coloring. A dual notion of cozonal labelings is defined, and an alternate proof of this theorem is given. New features of cozonal labelings and their utility are highlighted along the way. Potential extensions of results to related problems are presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Zonal labelings and Tait colorings from a new perspectiveZonal labelings and Tait colorings from a new perspectiveA. Bowling, W. Xie
    Andrew Bowling
    Weiguo Xie
    Aequationes mathematicae, 2024, 98 (6) : 1611 - 1625
  • [2] Local gap colorings from edge labelings
    Brandt, Axel
    Moran, Brent
    Nepal, Kapil
    Pfender, Florian
    Sigler, Devon
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 200 - 211
  • [3] TAIT COLORINGS ON GENERALIZED PETERSEN GRAPHS
    CASTAGNA, F
    PRINS, GCE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 639 - &
  • [4] Pfaffian labelings and signs of edge colorings
    Norine, Serguei
    Thomas, Robin
    COMBINATORICA, 2008, 28 (01) : 99 - 111
  • [5] Pfaffian labelings and signs of edge colorings
    Serguei Norine
    Robin Thomas
    Combinatorica, 2008, 28 : 99 - 111
  • [6] Tait colorings, and an instanton homology for webs and foams
    Kronheimer, P. B.
    Mrowka, T. S.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (01) : 55 - 119
  • [7] On zonal and inner zonal labelings of plane graphs of maximum degree 3
    Bowling, Andrew
    Zhang, Ping
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 130 - 137
  • [8] Graph Colorings and Labelings Having Multiple Restrictive Conditions in Topological Coding
    Zhang, Xiaohui
    Ye, Chengfu
    Zhang, Shumin
    Yao, Bing
    MATHEMATICS, 2022, 10 (09)
  • [9] Graphic lattices made by graph felicitous-type labelings and colorings of topological coding
    Zhang, Xiaohui
    Zhang, Shumin
    Ye, Chengfu
    Yao, Bing
    DISCRETE APPLIED MATHEMATICS, 2023, 336 : 37 - 46
  • [10] NEW FORM OF TAIT EQUATION
    SEMENOVA, AI
    TSIMMERMAN, SS
    DOKLADY AKADEMII NAUK SSSR, 1978, 242 (01): : 60 - 61