Multi-fidelity Bayesian optimization for spatially distributed control of flow over a circular cylinder

被引:2
|
作者
Han, Bing-Zheng [1 ]
Huang, Wei-Xi [1 ]
Xu, Chun-Xiao [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
DRAG REDUCTION; SUBOPTIMAL CONTROL; FEEDBACK-CONTROL;
D O I
10.1063/5.0175403
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Bayesian optimization based on Gaussian process regression has recently spread into a range of computational fluid dynamics problems. It still remains to be explored and developed for the complex flow problems with high dimensions and large computational cost. In this work, we present the application of multi-fidelity Bayesian optimization (MFBO) to drag reduction control of flow over a two-dimensional circular cylinder. The flow is modified by the spatially distributed tangential velocity on the cylinder surface, which is optimized by utilization of MFBO. It is shown that 50% reduction of the computational cost is obtained by using MFBO, as compared with that of single-fidelity Bayesian optimization, by involving low-fidelity simulations. The optimal tangential velocity distribution designed by MFBO is successfully applied to modify the wake of cylinder. As a result, an average drag coefficient reduction rate of 36.2% and decrease in the fluctuation amplitude of lift coefficient by 85.7% at Re = 200 are obtained. Effects of the hyper-parameters of the proposed MFBO control architecture are also examined.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Multi-Fidelity Bayesian Approach to Safe Controller Design
    Lau, Ethan
    Srivastava, Vaibhav
    Bopardikar, Shaunak D. D.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2904 - 2909
  • [42] Multi-fidelity optimization via surrogate modelling
    Forrester, Alexander I. J.
    Sobester, Andras
    Keane, Andy J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3251 - 3269
  • [43] Adaptive Objective Selection for Multi-Fidelity Optimization
    Akimoto, Youhei
    Shimizu, Takuma
    Yamaguchi, Takahiro
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 880 - 888
  • [44] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    Chinese Journal of Aeronautics , 2013, (02) : 279 - 286
  • [45] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    Chinese Journal of Aeronautics, 2013, 26 (02) : 279 - 286
  • [46] Multi-fidelity modeling and optimization of biogas plants
    Zaefferer, Martin
    Gaida, Daniel
    Bartz-Beielstein, Thomas
    APPLIED SOFT COMPUTING, 2016, 48 : 13 - 28
  • [47] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    CHINESE JOURNAL OF AERONAUTICS, 2013, 26 (02) : 279 - 286
  • [48] TOPFARM: Multi-fidelity optimization of wind farms
    Rethore, Pierre-Elouan
    Fuglsang, Peter
    Larsen, Gunner C.
    Buhl, Thomas
    Larsen, Torben J.
    Madsen, Helge A.
    WIND ENERGY, 2014, 17 (12) : 1797 - 1816
  • [49] MULTI-FIDELITY DISCRETE OPTIMIZATION VIA SIMULATION
    Li, Dongyang
    Liu, Haitao
    Jin, Xiao
    Li, Haobin
    Chew, Ek Peng
    Tan, Kok Choon
    Lin, Yun Hui
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 3170 - 3181
  • [50] ROBUST DESIGN OPTIMIZATION OF A COMPRESSOR ROTOR USING RECURSIVE COKRIGING BASED MULTI-FIDELITY UNCERTAINTY QUANTIFICATION AND MULTI-FIDELITY OPTIMIZATION
    Wiegand, Marcus
    Prots, Andriy
    Meyer, Marcus
    Schmidt, Robin
    Voigt, Matthias
    Mailach, Ronald
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,