Quiver Diagonalization and Open BPS States

被引:1
|
作者
Jankowski, Jakub [1 ]
Kucharski, Piotr [2 ]
Larraguivel, Helder [3 ,4 ,5 ]
Noshchenko, Dmitry [6 ]
Sulkowski, Piotr [5 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, Pl Borna 9, PL-50204 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[3] Jagiellonian Univ, Inst Theoret Phys, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[4] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[5] Univ Warsaw, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[6] Univ Amsterdam, Inst Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
荷兰研究理事会;
关键词
COHOMOLOGICAL HALL ALGEBRA; INVARIANTS; KNOTS;
D O I
10.1007/s00220-023-04753-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that motivic Donaldson-Thomas invariants of a symmetric quiver Q, captured by the generating function P-Q, can be encoded in another quiver Q((8)) of (al-most always) infinite size, whose only arrows are loops, and whose generating func-tion P-Q(8) is equal to P-Q upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson-Thomas and Labastida-Marino-Ooguri-Vafa invariants that count open BPS states, as well as expressing motivic Donaldson-Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
引用
收藏
页码:1551 / 1584
页数:34
相关论文
共 50 条
  • [31] Semiclassical framed BPS states
    Moore, Gregory W.
    Royston, Andrew B.
    Van den Bleeken, Dieter
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [32] BPS States, Crystals, and Matrices
    Sulkowski, Piotr
    ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [33] BPS states, knots, and quivers
    Kucharski, Piotr
    Reineke, Markus
    Stosic, Marko
    Sulkowski, Piotr
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [34] BPS coherent states and localization
    Berenstein, David
    Wang, Shannon
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [35] BPS coherent states and localization
    David Berenstein
    Shannon Wang
    Journal of High Energy Physics, 2022
  • [36] BPS states and minimal surfaces
    Mikhailov, A
    NUCLEAR PHYSICS B, 1998, 533 (1-3) : 243 - 274
  • [37] Algebras, BPS states, and strings
    Harvey, JA
    Moore, G
    NUCLEAR PHYSICS B, 1996, 463 (2-3) : 315 - 368
  • [38] BPS states in matrix strings
    Gopakumar, R
    NUCLEAR PHYSICS B, 1997, 507 (03) : 609 - 620
  • [39] Semiclassical framed BPS states
    Gregory W. Moore
    Andrew B. Royston
    Dieter Van den Bleeken
    Journal of High Energy Physics, 2016
  • [40] The Quiver Approach to the BPS Spectrum of a 4d N=2 Gauge Theory
    Cecotti, Sergio
    STRING-MATH 2012, 2015, 90 : 3 - 17